Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔBAC vuông tại B có BH là đường cao
nên \(HA\cdot HC=BH^2\left(1\right)\)
Xét ΔBHC vuông tại H có HE là đường cao
nên \(BE\cdot BC=BH^2\left(2\right)\)
Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)
a) Chứng minh : BHCK là hình bình hành
Xét tứ giác BHCK có : MH = MK = HK/2
MB = MI = BC/2
Suy ra : BHCK là hình bình hành
b) BK vuông góc AB và CK vuông góc AC
Vì BHCK là hình bình hành ( cmt )
Suy ra : BK // HC và CK // BH ( tính chất hình bình hành )
mà CH vuông góc AB = F và BH vuông góc AC = E ( gt )
Suy ra : BK vuông góc AB và CK vuông góc AC ( Từ vuông góc đến // )
c) Chứng minh : BIKC là hình thang cân
Vì I đối xứng với H qua BC nên BC là đường trung bình của HI
Mà M thuộc BC Suy ra : MH = MI ( tính chất đường trung trực )
mà MH = MK = HK/2 (gt)
Suy ra : MI = MH = MK = 1/2 HC
Suy ra : Tam giác HIK vuông góc tại I
mà BC vuông góc HI (gt)
Suy ra : IC // BC
Suy ra : BICK là hình thang (1)
Ta có : BC là đường trung trực của HI (cmt)
Suy ra : CI = CH
a) Xét tam giác \(AHB\)vuông tại \(H\):
\(AB^2=AH^2+HB^2\)(định lí Pythagore)
\(\Rightarrow AB=\sqrt{AH^2+HB^2}=\sqrt{4^2+3^2}=5\left(cm\right)\)
Xét tam giác \(ABC\)vuông tại \(A\)đường cao \(AH\):
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{4^2}-\frac{1}{5^2}\)
\(\Rightarrow AC=\frac{20}{3}\left(cm\right)\)
\(BC^2=AB^2+AC^2\)(định lí Pythagore)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{25+\frac{400}{9}}=\frac{25}{3}\left(cm\right)\)
\(HC=BC-HB=\frac{25}{3}-3=\frac{16}{3}\left(cm\right)\)
b) Xét tam giác \(AID\)có: \(B\)là trung điểm của \(AD\)
\(BH//ID\)(vì cùng vuông góc với \(AI\))
nên \(BH\)là đường trung bình của tam giác \(AID\).
Suy ra \(H\)là trung điểm của \(AI\).
\(\Rightarrow AH=HI\Rightarrow HI=\frac{1}{2}HE\)
do đó \(I\)là trung điểm của \(HE\).
\(P=2tan\widehat{IED}-3tan\widehat{ECH}\)
\(=2\frac{ID}{IE}-3\frac{CH}{HE}\)
\(=\frac{4HB}{AH}-\frac{3}{2}\frac{CH}{AH}\)
\(=\frac{8.3-3.\frac{16}{3}}{2.4}=1\)
c) \(tan\widehat{IED}=\frac{ID}{IE}=\frac{2HB}{AH}=\frac{2.3}{4}=\frac{3}{2}\)
\(cot\widehat{CEH}=\frac{EH}{CH}=\frac{2AH}{CH}=\frac{2.4}{\frac{16}{3}}=\frac{3}{2}\)
\(tan\widehat{IED}=cot\widehat{CEH}\Rightarrow\widehat{IED}+\widehat{CEH}=90^o\Rightarrow\widehat{CED}=90^o\)
do đó ta có đpcm.