K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2018

a) Tính chất dãy tỉ số bằng nhau: \(\dfrac{x+y}{2014}=\dfrac{x-y}{2016}=\dfrac{x+y+x-y}{2014+2016}=\dfrac{2x}{4030}=\dfrac{x}{2015}\)

\(\dfrac{x+y}{2014}=\dfrac{x-y}{2016}=\dfrac{x+y-x+y}{2014-2016}=\dfrac{2y}{-2}=\dfrac{y}{-1}\)

Nên: \(\dfrac{x}{2015}=\dfrac{y}{-1}=\dfrac{xy}{2015}\)

Xét: \(\left\{{}\begin{matrix}\dfrac{x}{2015}=\dfrac{xy}{2015}\Leftrightarrow2015x=2015xy\Leftrightarrow y=1\\\dfrac{y}{-1}=\dfrac{xy}{2015}\Leftrightarrow2015y=-1xy\Leftrightarrow2015=-1x\Leftrightarrow x=-2015\end{matrix}\right.\)

2) \(VT=\left|x-6\right|+\left|x-10\right|+\left|x-2022\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(VT=\left|x-6\right|+\left|2022-x\right|+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(VT\ge\left|x-6+2022-x\right|+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(VT\ge2016+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\ge2016=VP\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}6\le x\le2022\\x=10\\y=2014\\z=2015\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=2014\\z=2015\end{matrix}\right.\)

12 tháng 5 2018

1)

<=>2x^2-x-6x+3=o

<=>x(2x-1)-3(2x,-1)=0

(2x-1)(x-3)=0

x={1/2;3}

23 tháng 11 2017

Giúp mk với mọi người

10 tháng 5 2018

bài 3 nhé

7 tháng 1 2019

Hình như hơi sai đề

7 tháng 1 2019

ko đúng đấy chứ

mình nhầm :

2) Vì /2x-3y/2015 lớn h+n hoặc bằng 0

và (x+y+x)2014 lớn hơn hoặc bằng 0 (với mọi x , y )

Mà /2x-3y/2015+ (x+y+z)2014 = 0

=) x+y+z = 0 (1)

=)2x- 3y = 0

=) x+y+x =0

=) 2(x+y+x)=0

=) 2x + 2y + 2x = 0

=) 3y+2y+3y = 0

=) 7y=0 =)y=0

thay y =0 vào (1)

=) ta có : x+y+x=0

=)x+0+x = 0

=) 2x=0 =) x=0

Vậy (x,y) = (0,0)

12 tháng 3 2017

Ta có \(\dfrac{a}{3b}=\dfrac{b}{3c}=\dfrac{c}{3d}=\dfrac{d}{3a}\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\Rightarrow\dfrac{a}{3b}=\dfrac{b}{3c}=\dfrac{c}{3d}=\dfrac{d}{3a}=\dfrac{a+b+c+d}{3\left(a+b+c+d\right)}=\dfrac{1}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{3b}=\dfrac{1}{3}\\\dfrac{b}{3c}=\dfrac{1}{3}\\\dfrac{c}{3d}=\dfrac{1}{3}\\\dfrac{d}{3a}=\dfrac{1}{3}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}3a=3b\\3b=3c\\3c=3d\\3d=3a\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\)

\(\Leftrightarrow a=b=c=d\) ( đpcm )

4 tháng 11 2017

Với 3a+3b+3c+3d=0 thì?

21 tháng 8 2015

Bài 1 : x/3 = y/4 = z/5 => x²/9 = y²/16 = z²/25 
=> 2x²/18 = 2y²/32 = 3z²/75 
=> x²/9 = (2x² + 2y² - 3z²)/(18 + 32 - 75) = - 100/(-25) = 1/4 
=> x²/9 = 1/4 => x² = 9/4 => x = ±3/2 
y²/16 = 1/4 => y² = 4 => y = ± 2 
z²/25 = 1/4 => z² = 25/4 => z = ±5/2 
Mà x, y, z cùng dấu. 
Vậy (x ; y ; z) = (3/2 ; 2 ; 5/2) , (-3/2 ; -2 ; -5/2)

11 tháng 7 2017

B3 ko tìm được x,y,z thỏa mãn do kết quả là 1 số không dương

29 tháng 6 2018

Ta có \(\frac{2a+b+c}{b+c}=\frac{2b+c+a}{c+a}=\frac{2c+a+b}{a+b}\Rightarrow\frac{2a}{b+c}+1=\frac{2b}{a+c}+1=\frac{2c}{a+b}+1\)

=> \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{3}{2}\)

^_^ 

21 tháng 12 2018

Bài 1: Đặt \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}=k\)

\(\Rightarrow\hept{\begin{cases}a=2016k\\b=2017k\\c=2018k\end{cases}}\).Thay vào M,ta có:

 \(M=4\left(2016k-2017k\right)\left(2017k-2018k\right)-\left(2018k-2016k\right)^2\)

\(=4.\left(-1k\right)\left(-1k\right)-\left(2k\right)^2\)

\(=4k^2-4k^2=0\)