Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Có: pt đt AB:\(\left\{{}\begin{matrix}vtcp\overrightarrow{AB}\left(-2;-6\right)\Rightarrow vtpt\overrightarrow{n}\left(6;-2\right)\\quaA\left(5;2\right)\end{matrix}\right.\)
=> \(AB:6x-2y-26=0\)
hay \(AB:3x-y-13=0\)
b) \(M\in Oy\Rightarrow M\left(0;y\right)\)
Có \(\overrightarrow{MA}\left(5;2-y\right),\overrightarrow{MB}\left(3;-4-y\right)\)
Do tam giác MAB cân tại M
\(\rightarrow MA=MB\Leftrightarrow MA^2=MB^2\Leftrightarrow5^2+\left(2-y\right)^2=3^2+\left(-4-y\right)^2\)
\(\Leftrightarrow y=\dfrac{1}{3}\)
Vậy \(M\left(0;\dfrac{1}{3}\right)\)
a) Gọi (d): y=ax+b
Vì (d)//y=2x-3 nên \(\left\{{}\begin{matrix}a=2\\b\ne-3\end{matrix}\right.\)
Vậy: (d): y=2x+b
Vì (d) đi qua điểm C(-1;4) nên
Thay x=-1 và y=4 vào (d), ta được:
\(2\cdot\left(-1\right)+b=4\)
hay b=6
Vậy: (d): y=2x+6
Thay y=0 vào (d), ta được:
2x+6=0
hay x=-3
Vậy: A(-3;0)
b) Vì y=ax+b đi qua hai điểm B(4;0) và C(-1;4) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-4\\b=a+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=\dfrac{-4}{5}+4=\dfrac{-4}{5}+\dfrac{20}{5}=\dfrac{16}{5}\end{matrix}\right.\)
a) Gọi (d): y=ax+b
Vì (d)//y=2x-3 nên ta có: \(\left\{{}\begin{matrix}a=2\\b\ne-3\end{matrix}\right.\)
=> (d): y=2x+b
Thay x=-1 và y=4 vào (d), ta được:
\(2\cdot\left(-1\right)+b=4\)
\(\Leftrightarrow b=6\)
Vậy: (D): y=2x+6
Thay y=0 vào (d),ta được:
\(2x+6=0\)
\(\Leftrightarrow x=-3\)
Vậy: A(-3;0)
b) Vì đồ thị hàm số y=ax+b đi qua hai điểm B(4;0) và C(-1;4) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-4\\-a+b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=4+a=4+\dfrac{-4}{5}=4-\dfrac{4}{5}=\dfrac{16}{5}\end{matrix}\right.\)
Vậy: \(a=-\dfrac{4}{5}\); \(b=\dfrac{16}{5}\)
c) Độ dài đoạn thẳng AB là:
\(AB=\sqrt{\left(-3-4\right)^2+\left(0-0\right)^2}=7\)(cm)
Độ dài đoạn thẳng AC là:
\(AC=\sqrt{\left(-3+1\right)^2+\left(0-4\right)^2}=2\sqrt{5}\left(cm\right)\)
Độ dài đoạn thẳng BC là:
\(BC=\sqrt{\left(4+1\right)^2+\left(0-4\right)^2}=\sqrt{41}\left(cm\right)\)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC\)
\(=7+2\sqrt{5}+\sqrt{41}\)
\(\simeq17,9\left(cm\right)\)
Còn thiếu tính góc tạo bởi đường thẳng BC và trục Ox mà bạn
Bài 3:
Đặt \(a=m^2-4\)
\(a)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)nghịch biến
\(\Leftrightarrow a< 0\)
\(\Leftrightarrow m^2-4< 0\)
\(\Leftrightarrow m^2< 4\)
\(\Leftrightarrow-\sqrt{4}< m< \sqrt{4}\)
\(\Leftrightarrow-2< m< 2\)
Vậy với \(-2< m< 2\)thì hàm số nghịch biến
\(b)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)đồng biến \(\forall x>0\)
\(\Leftrightarrow a>0\)
\(\Leftrightarrow m^2-4>0\)
\(\Leftrightarrow m^2>4\)
\(\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)
Vậy với \(\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)thì hàm số đồng biến \(\forall x>0\)
1: Tọa độ A là:
y=0 và 4x+m-3=0
=>x=(-m+3)/4 và y=0
=>OA=|m-3|/4
Tọa độ B là:
x=0 và y=m-3
=>OB=|m-3|
Theo đề, ta có: 1/2*(m-3)^2/4=9
=>(m-3)^2/4=18
=>(m-3)^2=72
=>\(m=\pm6\sqrt{2}+3\)
2:
PTHĐGĐ là:
x^2-4x-m+3=0
Δ=(-4)^2-4*(-m+3)=16+4m-12=4m+4
Để (P) cắt (d) tại hai điểm phân biệt thì 4m+4>0
=>m>-1
(4-x1)(x2-1)=2
=>4x2-4-x1x2+1=2
=>x2(x1+x2)-3-(-m+3)=2
=>x2*4-3+m-3=2
=>x2*4=2-m+6=8-m
=>x2=2-1/2m
=>x1=4-2+1/2m=1/2m+2
x1*x2=-m+3
=>-m+3=(1/2m+2)(2-1/2m)=4-1/4m^2
=>-m+3-4+1/4m^2=0
=>1/4m^2-m-1=0
=>m^2-4m-4=0
=>\(m=2\pm2\sqrt{2}\)
b: (d'): y=ax+b
Vì (d')//(d) nên a=-2
Vậy: (d'): y=-2x+b
Thay x=-5 và y=0 vào (d'), ta được:
b+10=0
hay b=-10
a: Gọi phương trình đường thẳng AB là (d): y=ax+b
Thay x=5 và y=2 vào y=ax+b, ta được:
\(a\cdot5+b=2\)(1)
Thay x=3 và y=-4 vào y=ax+b, ta được:
\(a\cdot3+b=-4\left(2\right)\)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}5a+b=2\\3a+b=-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a=6\\5a+b=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=3\\b=2-5a=2-5\cdot3=-13\end{matrix}\right.\)
Vậy: AB: y=3x-13
b: M thuộc trục hoành nên M(x;0)
M(x;0); A(5;2); B(3;-4)
\(MA=\sqrt{\left(5-x\right)^2+\left(2-0\right)^2}=\sqrt{\left(x-5\right)^2+4}\)
\(MB=\sqrt{\left(3-x\right)^2+\left(-4-0\right)^2}=\sqrt{\left(x-3\right)^2+16}\)
ΔMAB cân tại M
=>MA=MB
=>\(\left(x-5\right)^2+4=\left(x-3\right)^2+16\)
=>\(\left(x-5\right)^2-\left(x-3\right)^2=12\)
=>\(x^2-10x+25-x^2+6x-9=12\)
=>-4x+16=12
=>-4x=-4
=>x=1
vậy: M(1;0)