K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2021

Tam giác ABC có:

AB^2+AC^2=3^{2}+4^{2}=5^{2}

Mặt khác: BC^{2}=5^{2}

Vậy \mathrm{AB}^{2}+\mathrm{AC}^{2}=\mathrm{BC}^{2}.

Do đó \widehat{BAC}=90^{\circ} (định lí Py-ta-go đảo).

CA vuông góc với bán kính BA tại A nên CA là tiếp tuyến của đường tròn (B).

19 tháng 8 2021

tam giác ABC

28 tháng 6 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta có: AB2 + AC2 = 32 + 42 = 25

BC2 = 52 = 25

Nên AB2 + AC2 = BC2

=> tam giác ABC vuông tại A hay AC ⊥ BA.

Đường thẳng AC đi qua điểm A của đường tròn và vuông góc với bán kính BA đi qua điểm A nên AC là tiếp tuyến của đường tròn.

7 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta có:  A B 2   +   A C 2   =   3 2 +   4 2   =   25     B C 2   =   5 2   =   25

Nên  A B 2   +   A C 2   =   B C 2

=> tam giác ABC vuông tại A hay AC ⊥ BA.

Đường thẳng AC đi qua điểm A của đường tròn và vuông góc với bán kính BA đi qua điểm A nên AC là tiếp tuyến của đường tròn.

25 tháng 4 2017

Tam giác ABC vuông tại A (theo định lý Py-ta-go đảo)

⇒AC⊥AB,⇒AC⊥AB, do đó AC là tiếp tuyến.



25 tháng 4 2017

Ta có: AB2 + AC2 = 32 + 42 = 25.

BC2 = 52 = 25.

Nên AB2 + AC2 = BC2.

Suy ra tam giác ABC vuông tại A hay AC ⊥ BA.

Đường thẳng AC đi qua điểm A của đường tròn và vuông góc với bán kính BA đi qua điểm A nên AC là tiếp tuyến của đường tròn.

Bạn tự vẽ hình nha

a) Ta có: AB = AC (tính chất của hai tiếp tuyến cắt nhau). Nên ΔABC cân tại A.

Lại có AO là tia phân giác của góc A nên AO ⊥ BC. (trong tam giác cân, đường phân giác cũng là đường cao)

b) Gọi I là giao điểm của AO và BC. Suy ra BI = IC (đường kính vuông góc với một dây).

Xét ΔCBD có :

CI = IB

CO = OD (bán kính)

⇒ BD // OI (OI là đường trung bình của tam giác BCD).

Vậy BD // AO.

c) Theo định lí Pitago trong tam giác vuông OAC:

AC^2 = OA^2 – OC^2 = 42 – 22 = 12

=> AC = √12 = 2√3 (cm)

\(\sin OAC=\frac{OC}{OA}=\frac{1}{2}\)

=> OAC =30 độ

mà BAC =2OAC

=. BAC =60

Tam giác ABC cân có BAC = 60 => Tam giác ABC đều

+> AB=AC=BC=2√3 (cm)

K cho mk nh

25 tháng 7 2021

câu A : AB = AC ( theo tính chất của đường tiếp tuyến ) suy ra : tam giác ABC cân tại A , OA là đường phân giác cũng là đường cao vậy OA vuông góc với BC

8 tháng 5 2021

 Ta có

DB=DM; EC=EM; AB=AC (2 tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn thì khoảng cách từ điểm đó đến các tiếp điểm = nhau)

\(C_{ADE}=AD+DM+AE+EM=AD+DB+AE+EC=\)

\(=AB+AC=2AB\)

20 tháng 8 2021

Theo tính chất hai tiếp tuyến cắt nhau ta có: DM=DB, EM=EC.

Chu vi tam giác ADE bằng :

AD+DE+AE=AD+DM+ME+EA

=AD+DB+EC+AE

=AB+AC=2 . AB .

27 tháng 10 2023

a: ΔOAB cân tại O

mà OC là đường cao

nên OC là phân giác của \(\widehat{AOB}\)

Xét ΔOAC và ΔOBC có

OA=OB

\(\widehat{AOC}=\widehat{BOC}\)

OC chung

Do đó: ΔOAC=ΔOBC

=>\(\widehat{OAC}=\widehat{OBC}=90^0\)

=>CB là tiếp tuyến của (O)

b: Gọi giao điểm của AB với OC là H

ΔOAB cân tại O

mà OH là đường cao

nên H là trung điểm của AB

=>HA=HB=12(cm)

ΔAHO vuông tại H

=>\(HA^2+HO^2=AO^2\)

=>\(HO^2=15^2-12^2=81\)

=>HO=9(cm)

Xét ΔOAC vuông tại A có AH là đường cao

nên OH*OC=OA^2

=>OC=15^2/9=25(cm)

Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

=>AC là tiếp tuyến của (B;BA)

3 tháng 11 2021

Vì \(BC^2=AB^2+AC^2\) nên tg ABC vuông tại A

Do đó \(BA\perp AC\) hay AC là tt đường tròn (B;BA)

12 tháng 5 2019

Ta có:  B C 2 = A B 2 + A C 2

=>  B A C ^ = 90 0 => BA ⊥ AC