Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét hai tam giác vuông \(HAD\) và ABD có:
\(\left\{{}\begin{matrix}\widehat{DAH}=\widehat{DAB}\left(\text{cùng phụ }\widehat{ADB}\right)\\\widehat{DHA}=\widehat{DAB}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta HAD\sim\Delta ABD\) (g.g)
\(\Rightarrow\dfrac{HD}{AD}=\dfrac{AD}{BD}\Rightarrow HD=\dfrac{AD^2}{BD}\)
Áp dụng định lý Pitago: \(BD=\sqrt{AB^2+AD^2}=\sqrt{AB^2+BC^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)
\(\Rightarrow HD=\dfrac{6^2}{10}=3,6\left(cm\right)\)
b.
Theo cmt, do hai tam giác HAD và ABD đồng dạng
\(\Rightarrow\dfrac{HA}{AB}=\dfrac{AD}{BD}\Rightarrow HA.BD=AB.AD\)
Mà ABCD là hcn \(\Rightarrow AB=CD\)
\(\Rightarrow HA.BD=CD.AD\) (đpcm)
a.
Do ABCD là hình chữ nhật \(\Rightarrow\widehat{HBA}=\widehat{CDB}\) (so le trong)
Xét hai tam giác HBA và CDB có:
\(\left\{{}\begin{matrix}\widehat{HBA}=\widehat{CDB}\left(cmt\right)\\\widehat{AHB}=\widehat{BCD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta HBA\sim\Delta CDB\left(g.g\right)\)
b.
Xét hai tam giác AHD và BAD có:
\(\left\{{}\begin{matrix}\widehat{ADB}\text{ chung}\\\widehat{AHD}=\widehat{BAD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta AHD\sim\Delta BAD\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{DB}=\dfrac{DH}{AD}\Rightarrow AD^2=DH.DB\)
c.
Áp dụng định lý Pitago cho tam giác vuông BAD:
\(DB=\sqrt{AD^2+AB^2}=\sqrt{BC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Theo chứng minh câu b:
\(AD^2=DH.DB\Rightarrow DH=\dfrac{AD^2}{DB}=\dfrac{BC^2}{DB}=\dfrac{6^2}{10}=3,6\left(cm\right)\)
Áp dụng Pitago cho tam giác vuông AHD:
\(AH=\sqrt{AD^2-HD^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)
a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có
góc HDA chung
=>ΔHAD đồng dạng với ΔABD
b: ΔABD vuông tại A có AH là đường cao
nên DA^2=DH*DB
c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
DH=6^2/10=3,6cm
a: S=18cm2