K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2021

Ta có : (x + 7)6 \(\ge0\forall x\)

=> A = (x + 7)6 - 21 \(\ge-21\)

Dấu "=" xảy ra <=> x + 7 = 0

=> x =- 7

Vạy Min A = -21 <=> x = -7

b) Ta có -4(8 - x)8 \(\le0\)

=> 26 - 4(8 - x)8 \(\le26\)

Dấu "=" xảy ra <=> 8 - x = 0 

<=> x = 8

Vậy Max B = 26 <=> x = 8

12 tháng 9 2018

k mk đi

ai k mk

mk k lại

thanks

24 tháng 1 2016

Bài 1 : 

A đạt GTLN khi \(\frac{5}{4-x}\)đạt GTLN 

* Nếu 4 -x > 0 => \(\frac{5}{4-x}\)> 0            (1)

* Nếu 4 -x < 0 => \(\frac{5}{4-x}\)< 0            (2)

 

Từ (1) và (2) =>  \(\frac{5}{4-x}\)đạt GTLN khi 4 - x > 0 (a)

- Phân số  \(\frac{5}{4-x}\)> 0 có tử là 5 : không đổi nên  \(\frac{5}{4-x}\)đạt GTLN khi 4 - x đạt GTNN (b)

- Mà x thuộc Z => 4 - x thuộc Z (c)

- Từ (a), (b), và (c) => 4 - x = 1 => x = 3

Vậy x = 3 thì A có GTLN là \(\frac{5}{4-3}\)= 5

 

 

 

23 tháng 10 2023

a) Ta thấy: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)

\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)

Dấu \("="\) xảy ra khi: \(\left|\dfrac{2}{5}-x\right|=0\Leftrightarrow\dfrac{2}{5}-x=0\Leftrightarrow x=\dfrac{2}{5}\)

Vậy \(Min_Q=\dfrac{9}{2}\) khi \(x=\dfrac{2}{5}\).

\(---\)

b) Ta thấy: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)

\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\forall x\)

Dấu \("="\) xảy ra khi: \(\left|x+\dfrac{2}{3}\right|=0\Leftrightarrow x+\dfrac{2}{3}=0\Leftrightarrow x=-\dfrac{2}{3}\)

Vậy \(Min_M=-\dfrac{3}{5}\) khi \(x=-\dfrac{2}{3}\).

\(---\)

c) Ta thấy: \(\left|\dfrac{7}{4}-x\right|\ge0\forall x\)

\(\Rightarrow-\left|\dfrac{7}{4}-x\right|\le0\forall x\)

\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\forall x\)

Dấu \("="\) xảy ra khi: \(\left|\dfrac{7}{4}-x\right|=0\Leftrightarrow\dfrac{7}{4}-x=0\Leftrightarrow x=\dfrac{7}{4}\)

Vậy \(Max_N=-8\) khi \(x=\dfrac{7}{4}\).

23 tháng 10 2023

a) Ta có: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)

\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)

Dấu "=" xảy ra khi:

\(\dfrac{2}{5}-x=0\)

\(\Rightarrow x=\dfrac{2}{5}\)

Vậy: ... 

b) Ta có: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)

\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\)

Dấu "=" xảy ra:

\(x+\dfrac{2}{3}=0\)

\(\Rightarrow x=-\dfrac{2}{3}\)

Vậy: ...

c) Ta có: \(-\left|\dfrac{7}{4}-x\right|\le0\forall x\)

\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\)

Dấu "=" xảy ra:

\(\dfrac{7}{4}-x=0\)

\(\Rightarrow x=\dfrac{7}{4}\)

Vậy: ...

5 tháng 9 2020

\(A=\left(x+\frac{4}{7}\right)^{24}+\frac{-12}{293}\)

Ta có \(\left(x+\frac{4}{7}\right)^{24}\ge0\forall x\Rightarrow\left(x+\frac{4}{7}\right)^{24}+\frac{-12}{293}\ge\frac{-12}{293}\)

Đẳng thức xảy ra <=> x + 4/7 = 0 => x = -4/7

=> MinA = -12/293 <=> x = -4/7

\(B=-\left(x+\frac{1}{6}\right)^{26}-\left(x+y+\frac{3}{8}\right)^{422}+5,98\)

Ta có \(\hept{\begin{cases}-\left(x+\frac{1}{6}\right)^{26}\le0\forall x\\-\left(x+y+\frac{3}{8}\right)^{442}\le0\forall x,y\end{cases}}\Rightarrow-\left(x+\frac{1}{6}\right)^{26}-\left(x+y+\frac{3}{8}\right)+5,98\le5,98\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+\frac{1}{6}=0\\x+y+\frac{3}{8}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{6}\\y=-\frac{5}{24}\end{cases}}\)

=> MaxB = 5, 98 <=> x = -1/6 ; y = -5/24

19 tháng 7 2018

a, \(A=\left|2x-5\right|+\left|2x-12\right|=\left|2x-5\right|+\left|12-2x\right|\ge\left|2x-5+12-2x\right|=7\)

Dấu "=" xảy ra khi \(\left(2x-5\right)\left(12-2x\right)\ge0\Leftrightarrow\frac{5}{2}\le x\le6\)

Vậy Amin=7 khi 5/2 <= x <= 6

b, \(B=\left|3x+6\right|+\left|3x-8\right|=\left|3x+6\right|+\left|8-3x\right|\ge\left|3x+6+8-3x\right|=14\)

Dấu "=" xảy ra khi \(\left(3x+6\right)\left(8-3x\right)\ge0\Leftrightarrow-2\le x\le\frac{8}{3}\)

Vậy...

c, \(C=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=\left(\left|x-1\right|+\left|3-x\right|\right)+\left(\left|x-2\right|+\left|4-x\right|\right)\ge\left|x-1+3-x\right|+\left|x-2+4-x\right|=2+2=4\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(4-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}\Leftrightarrow}2\le x\le3}\)

Vậy...

4 tháng 6 2015

*ta có I3-0,25xI 0

=>-2I3-0,25xI 0

=>P=-2I3-0,25xI-7-7

Dấu = xảy ra khi:

3-0,25x=0

-0,25x=-3

x      =12

Vậy GTLN của Q=-2|3-0,25.x|-7 là -7 tại x=12

*ta có |7-0,35x|0

=>4|7-0,35x|0

=>P=4|7-0,35x|+88

Dấu = xảy ra khi:

7-0,35x=0

-0,35x=-7

x=20

Vậy GTNN của P=4|7-0,35x|+8 là 8 tại x=20

9 tháng 2 2017

a) ta thấy A có thể âm, có thể dương nên để A lớn nhất thì 6-x>0 hay x<6

đẻ \(A=\frac{2}{6-x}\)lớn nhất \(\Leftrightarrow\)6-x nhỏ nhất <=> x lớn nhất

Mà x<6 nên x=5

vậy GTLN của A=2 khi x=5

b) B=\(\frac{8-x}{x-3}=\frac{5-\left(x-3\right)}{x-3}=\frac{5}{x-3}-1\)

Nên B nhỏ nhất <=> \(\frac{5}{x-3}\)nhỏ nhất <=> x-3 lớn nhất (?)

đề này cho thiếu dữ kiện

a) \(A=2\left|x-3\right|+\left|2x-10\right|=\left|2x-3\right|+\left|10-2x\right|\ge\left|2x-3+10-2x\right|=7\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-3\right)\left(10-2x\right)\ge0\)\(\Leftrightarrow\)\(\frac{3}{2}\le x\le5\)

b) \(B\left|\frac{1}{4}x-8\right|+\left|2-\frac{1}{4}x\right|\ge\left|\frac{1}{4}x-8+2-\frac{1}{4}x\right|=6\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(\frac{1}{4}x-8\right)\left(2-\frac{1}{4}x\right)\ge0\)\(\Leftrightarrow\)\(8\le x\le32\)