Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ A = B
vì \(\frac{10^{1993}+10}{10^{1993}+1}=1\)và \(\frac{10^{1994}+10}{10^{1994}+1}=1\)
Học tốt
A = B
vì \(\frac{10^{1993}+10}{10^{1993}+1}=10\) và \(\frac{10^{1994}+10}{10^{1994}+1}=10\)
học tốt
\(A=\frac{10^{1993}+10}{10^{1993}+1}\)
\(=\frac{10^{1993}+1+9}{10^{1993}+1}\)
\(=\frac{10^{1993}+1}{10^{1993}+1}+\frac{9}{10^{1993}+1}\)
\(=1+\frac{9}{10^{1993}+1}\)( 1 )
\(B=\frac{10^{1994}+10}{10^{1994}+1}\)
\(=\frac{10^{1994}+1+9}{10^{1994}+1}\)
\(=\frac{10^{1994}+1}{10^{1994}+1}+\frac{9}{10^{1994}+1}\)
\(=1+\frac{9}{10^{1994}+1}\)( 2 )
Vì \(\frac{9}{10^{1993}+1}>\frac{9}{10^{1994}+1}\)( 3 )
Từ ( 1 )( 2 )( 3 )\(\Rightarrow1+\frac{9}{10^{1993}+1}>1+\frac{9}{10^{1994}+1}\)
\(\Rightarrow A>B\)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{1}{x\left(x+1\right):2}=1\frac{1994}{1993}\)
\(< =>1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{3987}{1993}\)
\(< =>1+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+1\right)}=\frac{3987}{1993}\)
\(< =>1+2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{3987}{1993}\)
\(< =>1+2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{3987}{1993}< =>2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{3987}{1993}-1=\frac{1994}{1993}\)
\(< =>\frac{1}{2}-\frac{1}{x+1}=\frac{1994}{1993}:2=\frac{997}{1993}< =>\frac{1}{x+1}=\frac{1}{2}-\frac{997}{1993}=-\frac{1}{3986}\)
<=>x=-3987
\(\Rightarrow\frac{1}{2}.\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}\right)=\frac{1}{2}.1\frac{1994}{1993}\)
\(\Rightarrow\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\left(x+1\right)}=\frac{3987}{3986}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{3987}{3986}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{3987}{3986}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{-3986}\)
=> x + 1 = -3986
=> x = -3987
Ta có :
\(A=\frac{10^{1992}+1}{10^{1991}+1}\)
\(\Rightarrow\frac{1}{10}A=\frac{10^{1992}+1}{10^{1992}+10}=\frac{10^{1992}+10-11}{10^{1992}+10}=1-\frac{11}{10^{1992}+10}\)
\(B=\frac{10^{1993}+1}{10^{1992}+1}\)
\(\Rightarrow\frac{1}{10}B=\frac{10^{1993}+1}{10^{1993}+10}=\frac{10^{1993}+10-11}{10^{1993}+10}=1-\frac{11}{10^{1993}+10}\)
Mà \(10^{1993}+10>10^{1992}+10\)
\(\Rightarrow\frac{11}{10^{1993}+10}< \frac{11}{10^{1992}+10}\)
\(\Rightarrow1-\frac{11}{10^{1993}+10}>1-\frac{11}{10^{1992}+10}\)
\(\Leftrightarrow\frac{1}{10}B>\frac{1}{10}A\)
\(\Rightarrow B>A\)
\(A=10^{1991}.\left(1+10+10^2+10^3\right)+1238=1111.10^{1991}+1238\)
\(\left\{{}\begin{matrix}10⋮2\\1238⋮2\end{matrix}\right.\) \(\Rightarrow A⋮2\)
\(10\equiv1\left(mod9\right)\Rightarrow10^{1991}\equiv1\left(mod9\right)\)
Và \(1111\equiv4\left(mod9\right)\Rightarrow1111.10^{1991}\equiv4\left(mod9\right)\)
\(1238\equiv5\left(mod9\right)\)
\(\Rightarrow1111.10^{1991}+1238\equiv4+5\left(mod9\right)\)
Do \(4+5⋮9\Rightarrow A⋮9\)
Mà 2 và 9 nguyên tố cùng nhau \(\Rightarrow A⋮19\)
\(1111.10^{1991}=100.1111.10^{1989}⋮4\) do 100 chia hết cho 4
Và \(1238\) chia hết cho 2 mà ko chia hết cho 4
\(\Rightarrow A\) chia hết cho 2 mà ko chia hết cho 4
\(\Rightarrow\) A không phải là số chính phương
Ta có công thức :
\(\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)
\(\Rightarrow\)\(B>A\) hay \(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
\(\Rightarrow\frac{A}{10}=\frac{10^{1992}+1}{10^{1992}+10}=\frac{10^{1992}+10-9}{10^{1992}+10}=1-\frac{9}{10\left(10^{1991}+1\right)}\)
\(\Rightarrow\frac{B}{10}=\frac{10^{1993}+1}{10^{1993}+10}=\frac{10^{1993}+10-9}{10^{1993}+10}=1-\frac{9}{10\left(10^{1992}+1\right)}\)
Vì \(1-\frac{9}{10\left(10^{1991}+1\right)}< 1-\frac{9}{10\left(10^{1992}+1\right)}\Rightarrow A< B\)