Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{90}\)
\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\right)\)
Đặt \(B=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\)
Ta có: \(\frac{1}{31}>\frac{1}{45}\)
\(\frac{1}{32}>\frac{1}{45}\)
....................
\(\frac{1}{45}=\frac{1}{45}\)
\(\Rightarrow B>\frac{1}{45}.15\)
\(\Rightarrow B>\frac{1}{3}\)
Đặt \(C=\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\)
Ta có: \(\frac{1}{46}>\frac{1}{90}\)
\(\frac{1}{47}>\frac{1}{90}\)
.....................
\(\frac{1}{90}=\frac{1}{90}\)
\(\Rightarrow C>\frac{1}{90}.45\)
\(\Rightarrow C>\frac{1}{2}\)
\(\Rightarrow B+C>\frac{1}{3}+\frac{1}{2}\)
Hay \(A>\frac{5}{6}\left(1\right)\)
Lại có: \(A=\left(\frac{1}{31}+...+\frac{1}{59}\right)+\left(\frac{1}{60}+...+\frac{1}{90}\right)\)
Đặt \(D=\frac{1}{31}+...+\frac{1}{59}\)
Ta có: \(\frac{1}{31}< \frac{1}{30}\)
. ...................
\(\frac{1}{59}< \frac{1}{30}\)
\(\Rightarrow D< \frac{1}{30}.60\)
\(\Rightarrow D< \frac{1}{2}\)
Đăt \(E=\frac{1}{60}+...+\frac{1}{90}\)
Ta có: \(\frac{1}{60}=\frac{1}{60}\)
.................
\(\frac{1}{90}< \frac{1}{60}\)
\(\Rightarrow E< \frac{1}{60}.31\)
\(\Rightarrow E< \frac{31}{60}< 1\)
\(\Rightarrow E< 1\)
\(\Rightarrow E+D< 1+\frac{1}{2}\)
Hay \(A< \frac{3}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{5}{6}< A< \frac{3}{2}\)
\(B=\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}=\dfrac{30}{60}=\dfrac{1}{2}\)
\(C=\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{90}>\dfrac{1}{90}+\dfrac{1}{90}+...+\dfrac{1}{90}=\dfrac{30}{90}=\dfrac{1}{3}\)
Do đó: \(B+C>\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)(đpcm)
Ta có: A= \(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{90}\)
\(A=\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{60}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{90}\right)\)
A= B+C
Ta có: \(B=\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}\)
\(B=\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{60}>30.\dfrac{1}{60}=\dfrac{1}{2}\) (1)
Lại có: \(C=\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{90}>\dfrac{1}{90}+\dfrac{1}{90}+...+\dfrac{1}{90}\)
\(C=\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{90}>30.\dfrac{1}{90}=\dfrac{1}{3}\) (2)
Từ (1) và (2) => \(A>\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
Vậy \(A>\dfrac{5}{6}\)
(1/32)^100 = ((1/2)^5)^100 = (1/2)^500
(1/16)^120 = ((1/2)^4)^120 = (1/2)^480
=> (1/32)^100 > (1/16)^120
(1/32)^100=0
(1/16)^120=0
nen (1/32)^100=(1/16)^100
k cho minh nha
\(M=\dfrac{1}{31}+\dfrac{1}{32}+.................+\dfrac{1}{89}+\dfrac{1}{90}\)
\(\Leftrightarrow M=\left(\dfrac{1}{31}+\dfrac{1}{32}+.........+\dfrac{1}{60}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+........+\dfrac{1}{90}\right)\)
Đặt :
\(A=\dfrac{1}{31}+\dfrac{1}{32}+.......+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+.......+\dfrac{1}{60}=\dfrac{1}{60}.30=\dfrac{1}{2}\)
\(B=\dfrac{1}{61}+\dfrac{1}{62}+.......+\dfrac{1}{90}>\dfrac{1}{90}+\dfrac{1}{90}+......+\dfrac{1}{90}=\dfrac{1}{90}.30=\dfrac{1}{3}\)
\(\Leftrightarrow M=\dfrac{1}{31}+\dfrac{1}{32}+.........+\dfrac{1}{89}+\dfrac{1}{90}=A+B< \dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
\(\Leftrightarrow M< \dfrac{5}{6}\rightarrowđpcm\)