K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2021

Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)

Aps dụng tính chất dãy tỉ số bằn nhau:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)

=>\(\dfrac{x}{2}=1=>x=2\)

  \(\dfrac{y}{3}=1=>y=3\)

\(\dfrac{z}{5}=1=>z=5\)

Vậy x=2, y=3, z=5

18 tháng 4 2021

Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được : 

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)

\(\Leftrightarrow x=2;y=3;z=5\)

2 tháng 4 2018

Ta có:

\(a^2+ab+\dfrac{b^2}{3}=c^2+\dfrac{b^2}{3}+a^2+ac+c^2\)

\(\Rightarrow a^2+ab+\dfrac{b^2}{3}=2c^2+\dfrac{b^2}{3}+a^2+ac\)

\(\Rightarrow ab=2c^2+ac\)

\(\Rightarrow ab+ac=2ac+2c^2\)

\(\Rightarrow a\left(b+c\right)=2c\left(a+c\right)\)

\(\Rightarrow\dfrac{2c}{a}=\dfrac{b+c}{a+c}\left(đpcm\right)\)

14 tháng 3 2020

Bái Phục , Mong ngài hãy nhận con làm đệ tử .haha

a^2+ab+b^2/3=c^2+b^2/3+a^2+ac+c^2

=>ab=2c^2+ac

=>2c/a=(b+c)/(a+c)

23 tháng 3 2023

Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?

9 tháng 2 2020

\(a^2+ab+\frac{b^2}{3}=c^2+\frac{b^2}{3}+a^2+ac+c^2\left(=25\right)\)

\(\Rightarrow a^2+ab+\frac{b^2}{3}=2c^2+\frac{b^2}{3}+a^2+ac\\ \Rightarrow ab=2c^2+ac\\ \Rightarrow ab+ac=2c^2+2ac\\ \Rightarrow a\left(b+c\right)=2c\left(a+c\right)\\ \Rightarrow\frac{2c}{a}=\frac{b+c}{a+c}\)

12 tháng 2 2018

ta có : \(\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\)

khi đó ta có : \(\dfrac{b-a}{a}=\dfrac{b^2-a^2}{a^2+c^2}\Leftrightarrow\dfrac{b-a}{a}=\dfrac{\left(b-a\right)\left(b+a\right)}{a^2+ab}\)

\(\Leftrightarrow\dfrac{b-a}{a}=\dfrac{\left(b-a\right)\left(b+a\right)}{a\left(a+b\right)}\Leftrightarrow\dfrac{b-a}{a}=\dfrac{b-a}{a}\) (luôn đúng)

\(\Rightarrow\) (đpcm)