K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2019

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Kẻ AH ⊥ CD, BK ⊥ CD thì AH//BK nên hình thang ABKH có hai cạnh bên song song.

Áp dụng tính chất của hình thang ABKH có hai cạnh bên song song, ta có:Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng định lí Py – ta – go vào tam giác ADH vuông tại H ta được:

Vậy chiều cao của hình thang cân là 3cm.

10 tháng 11 2015

1. Tính được AH=3cm theo định lý Pitago, vẽ đường cao CK (K thuộc AB), tính được BK=3cm nên HK=6cm nên AB=12cm, lúc đó sẽ tinhd được diện tích hình thang

2. Tương tự

GV
29 tháng 4 2017

a) \(dt\left(ABCD\right)=\dfrac{AB+CD}{2}.DE=\dfrac{10+6}{2}.5=40\left(cm^2\right)\)

b) Xem hình vẽ

A B C D E 6 4 5 F

Tam giác vuông EAD có: \(AE=\sqrt{AD^2-DE^2}=\sqrt{5^2-4^2}=3\)

Vì ABCD là hình thang cân nên AE = FB = 3.

Suy ra AB = EF + AE + FB = 6 + 3 + 3 = 12.

\(dt\left(ABCD\right)=\dfrac{AB+CD}{2}.DE=\dfrac{12+6}{2}.4=36\left(cm^2\right)\)

a: Xét ΔABC và ΔBAD có

AB chung

BC=AD

AC=BD

=>ΔABC=ΔBAD

=>góc OBA=góc OAB

=>OA=OB

OA+OC=AC

OB+OD=BD

mà OA=OB và AC=BD

nên OC=OD

b: Xét ΔEDC có AB//DC

nên EA/AD=EB/BC

mà AD=BC

nên EA=EB

EA+AD=ED

EB+BC=EC

mà EA=EB và AD=BC

nên ED=EC

EA=EB

OA=OB

=>EO là trung trực của AB

EC=ED

OC=OD

=>EO là trung trực của CD

13 tháng 9 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét hình thang cân ABCD có AB // CD

Đáy nhỏ CD = 6cm, cạnh bên AD = 5cm

Đường cao DH = 4cm. Kẻ CK ⊥ AB

Ta có tứ giác CDHK là hình chữ nhật

HK = CD = 6cm

△ AHD vuông tại H. Theo định lý Pi-ta-go ta có: A D 2 = A H 2 + D H 2

⇒  A H 2 = A D 2 - D H 2 = 5 2 - 4 2  = 25 – 16 = 9 ⇒ AH = 3cm

Xét hai tam giác vuông DHA và CKB :

∠ (DHA)= ∠ (CKB)= 90 0

AD = BC (tính chất hình thang cân)

∠ A =  ∠ B(gt)

Do đó:  △ DHA =  △ CKB (cạnh huyền, góc nhọn)

⇒ KB = AH = 3 (cm)

AB = AH + HK + KB = 3 + 6 + 3 = 12 (cm)

S A B C D  = (AB + CD) / 2. DH = (12 + 6) / 2. 4 = 36( c m 2 )

6 tháng 8 2023

 

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a ) Xét ADC và BCD, ta có:

AD = BC (tính chất hình thang cân)

(ADC) = (BCD) (gt)

DC chung

Do đó: ADC = BCD (c.g.c) ⇒ ∠�1∠�1

Trong OCD ta có: ∠�1∠�1 ⇒ OCD cân tại O ⇒ OC = OD (1)

AC = BD (tính chất hình thang cân) ⇒ AO + OC = BO + OD (2)

Từ (1) và (2) suy ra: AO = BO.

b)

 

���^=���^(��)⇒���^=���^ 

⇒ ∆ OCD cân tại O

⇒ OC = OD

⇒ OA + AD = OB + BC

Mà AD = BC (tính chất hình thang cân)

⇒ OA = OB

Xét ∆ ADC và ∆ BCD :

AD = BC (chứng minh trên)

AC = BD (tính chất hình thang cân)

CD cạnh chung

Do đó: ∆ ADC = ∆ BCD (c.c.c)

⇒�^1=�^1

⇒ ∆ EDC cân tại E

⇒ EC = ED nên E thuộc đường trung trực của CD

OC = OD nên O thuộc đường trung trực của CD

E≢ O. Vậy OE là đường trung trực của CD.

BD = AC (chứng minh trên)

⇒ EB + ED = EA + EC mà ED = EC

⇒ EB = EA nên E thuộc đường trung trực AB

E≢ O. Vậy OE là đường trung trực của AB.

22 tháng 6 2023

2)

Có: \(\left\{{}\begin{matrix}AB=AD\left(gt\right)\\AD=BC\left(2.cạnh.bên.hình.thang.cân\right)\end{matrix}\right.\)

\(\Rightarrow AB=BC\Rightarrow\Delta ABC.cân.tại.B\)

Mà AB // ED (gt)

\(\Rightarrow\widehat{BAC}=\widehat{ACD}\left(so.le.trong\right)\)

\(\Rightarrow\widehat{ACB}=\widehat{ACD}\)

=> CA là tia phân giác của góc C.