Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)
b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)
Lời giải:
a.
$27A=x^3-9x^2+162x-27=(x-3)^3+135x$
$=(303-3)^3+135.303=27040905$
$A=1001515$
b.
$B=2[(x+y)^3-3xy(x+y)]-3[(x+y)^2-2xy]$
$=2(1-3xy)-3(1-2xy)=2-6xy-3+6xy=-1$
c.
$C=x^3+y^3+3xy(x+y)=(x+y)^3=1^3=1$
\(8x^3+12x^2+6x+1=\left(2x+1\right)^3\)
\(=\left(2\cdot24.5+1\right)^3=50^3=125000\)
\(A=x^3+3x^2+3x+6\)
\(=x^3+3x^2+3x+1+5\)
\(=\left(x+1\right)^3+5\)
Thay x = 19 vào biểu thức \(A=\left(x+1\right)^3+5\)ta được:
\(A=\left(19+1\right)^3+5=20^3+5=8000+5=8005\)
Vậy giá trị của biểu thức A tại x = 19 là 8005.
\(B=x^3-3x^2+3x\)
\(=x^3-3x^2+3x-1+1\)
\(=\left(x-1\right)^3+1\)
Thay x = 11 vào biểu thức \(B=\left(x-1\right)^3+1\)ta được:
\(B=\left(11-1\right)^3+1=10^3+1=1000+1=1001\)
Vậy giá trị của biểu thức B tại x = 11 là 1001.
\(B=x^3-3x^2+3x\)
\(=x^3-3x^21+3x1^2-1^3+1\)
\(=\left(x-1\right)^3+1\)
thay x=11 vào P ta đc:
\(B=\left(11-1\right)^3+1=1001\)
Vậy B=1001
Bài làm:
Ta có: Tại x = 11 thì giá trị của B là
\(B=x\left(x^2-3x+3\right)=11\left(11^2-3.11+3\right)\)
\(=11.91=1001\)