K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2019

Tiện tay chém trước vài bài dễ.

Bài 1:

\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)

Bài 2:

1) Thấy nó sao sao nên để tối nghĩ luôn

2) 

c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)

Đẳng thức xảy ra khi a = 0; b = 1

24 tháng 11 2019

2b) \(VT=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1>0\)

Có đpcm

23 tháng 7 2016

bài 1 : a. x^3 +27 -54-x^3 =-27

b. 8x^3 +y^3 -8x^3 +y^3 =2y^3

c. (2x-1+2x+2)(2x-1-2x-2)=(4x+1).(-3)=-12x-3

d. a^3 +b^3 +3ab(a+b) -3ab(a+b)=a^3+b^3

23 tháng 7 2016

 a. (x-1)^2 =5^2

x-1=5

x=6

 

2 tháng 4 2017

Bài này khó dữ chị ơi! Em chỉ mới học lớp 4! Sorry chị nha!

2 tháng 4 2017

em bó tay.com. vn

em mới lớp 5 thui chị ơi

19 tháng 4 2018

chỗ ý 2 là x + y + z = 1 nha

21 tháng 3 2017

mình nghĩ ra cách này ko biết đúng hay sai, nhưng mình sẽ cm cho bạn xem trước cái này để mình đảo lại trong quá trình làm bài luôn cho đỡ mất thời gian

\(\dfrac{1}{x-y}-\dfrac{1}{x-z}=\dfrac{x-z-x+y}{\left(x-y\right)\left(x-z\right)}=\dfrac{\left(y-z\right)}{\left(x-y\right)\left(x-z\right)}\)

thế nên sẽ đảo ngược lại trong bài này, vây ta sẽ có

\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{1}{x-y}-\dfrac{1}{x-z}\\ \dfrac{z-x}{\left(y-z\right)\left(x-y\right)}=\dfrac{1}{y-z}-\dfrac{1}{x-y}\\ \dfrac{x-y}{\left(z-x\right)\left(y-x\right)}=\dfrac{1}{z-x}-\dfrac{1}{y-z}\)

thay vào đề bài ta được

\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(y-x\right)}\\ =\dfrac{1}{x-y}-\dfrac{1}{x-z}+\dfrac{1}{y-z}-\dfrac{1}{y-x}+\dfrac{1}{z-x}-\dfrac{1}{y-x}\\ =\dfrac{1}{x-y}+\dfrac{1}{x-y}+\dfrac{1}{y-z}+\dfrac{1}{y-z}+\dfrac{1}{z-x}+\dfrac{1}{z-x}\\ =\dfrac{2}{x-y}+\dfrac{2}{y-x}+\dfrac{2}{z-x}\left(đpcm\right)\)

vậy ...

mình nghĩ ra thì là như z, chúc may mắn :)

23 tháng 3 2017

bài này mk cũng làm dc ròi haha

thanks bạn nha

a: Ta có: \(\left(ac+bd\right)^2-\left(ad+bc\right)^2\)

\(=a^2c^2+b^2d^2+2abcd-a^2d^2-b^2c^2-2abcd\)

\(=a^2\left(c^2-d^2\right)-b^2\left(c^2-d^2\right)\)

\(=\left(a^2-b^2\right)\left(c^2-d^2\right)\)

12 tháng 8 2021

Bạn có làm đc câu b ko, nếu đc thì làm nốt giùm mink nha

24 tháng 11 2019

1) Biến đồi tương đương:

\(\left(x^2+y^2\right)^2\ge8\left(x-y\right)^2\)

\(\Leftrightarrow\left(x^2+y^2\right)^2\ge8xy\left(x-y\right)^2\)

\(\Leftrightarrow\left(x^2-4xy+y^2\right)^2\ge0\)(đúng)

2) Sửa đề: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\left(\text{với }xy\ge1\right)\)

\(\Leftrightarrow\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(x^2+1\right)\left(y^2+1\right)\left(xy+1\right)}\ge0\) (đúng)

24 tháng 11 2019

t ko xét dấu đẳng thức đâu, xấu lắm (ở bài 1), nên you tự xét:D