Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)
\(\Rightarrow P=abc\)
Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z
\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
\(\Rightarrow\frac{acy-bcx}{c^2}=\frac{bcx-abz}{b^2}=\frac{abz-acy}{a^2}=\frac{0}{a^2+b^2+c^2}=0\)
\(\Rightarrow\hept{\begin{cases}ay-bx=0\\cx-az=0\\bz-cy=0\end{cases}}\)
\(\Rightarrow\left(ay-bx\right)^2+\left(cx-az\right)^2+\left(bz-ay\right)^2=0\)
\(\Rightarrow a^2y^2-2axby+b^2x^2+a^2z^2-2axcz+c^2x^2+b^2z^2-2bycz\)
\(+c^2y^2=0\)
\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)
\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Rightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)
2) Để sau đi (em chưa nghĩ ra)
3) \(A=\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
\(=\left(x+y\right)^2\left(x-y\right)+\left(y+z\right)^2\left(y-z\right)+\left(z+x\right)^2\left(z-x\right)\)
Đặt x - y = a; y - z = b => z - x = -(a+b)
\(A=\left(x+y\right)^2a+\left(y+z\right)^2b-\left(z+x\right)^2a-\left(z+x\right)^2b\)
\(=a\left[\left(x+y\right)^2-\left(z+x\right)^2\right]+b\left[\left(y+z\right)^2-\left(z+x\right)^2\right]\)
\(=\left(x-y\right)\left(x+y-z-x\right)\left(x+y+z+x\right)+\left(y-z\right)\left(y+z-z-x\right)\left(y+z+z+x\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(2x+y+z\right)-\left(y-z\right)\left(x-y\right)\left(2z+x+y\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
Em tính sai sót chỗ nào thì thông cảm cho em ạ :>
1)
=2(a4+b4+c4-4a2b2-4a2c2-4b2c2)
=2a4+2b4+2c4-4a2b2-4a2c2-4b2c2
=(a4-2a2b2+b4)+(a4-2a2c2+c4)+(b4-2b2c2+c4
Chi tham khao tai day:
Câu hỏi của Vương Nguyễn Thanh Triều - Toán lớp 8 - Học toán với OnlineMath
a: Ta có: \(\left(ac+bd\right)^2-\left(ad+bc\right)^2\)
\(=a^2c^2+b^2d^2+2abcd-a^2d^2-b^2c^2-2abcd\)
\(=a^2\left(c^2-d^2\right)-b^2\left(c^2-d^2\right)\)
\(=\left(a^2-b^2\right)\left(c^2-d^2\right)\)
Bạn có làm đc câu b ko, nếu đc thì làm nốt giùm mink nha
\(A=\left(1+b^2+a^2+a^2b^2\right).\left(1+c^2\right)\)
\(=1+a^2+b^2+c^2+a^2c^2+b^2c^2+a^2b^2+a^2b^2c^2\)
\(=1+\left(a+b+c\right)^2-2.\left(ab+bc+ac\right)+\left(ab+bc+ac\right)^2-2abc.\left(a+b+c\right)+a^2b^2c^2\)
Thay ab+bc+ac=1 vào A, ta có:
\(A=1+\left(a+b+c\right)^2-2+1-2abc.\left(a+b+c\right)+a^2b^2c^2\)
\(=\left(a+b+c\right)^2-2abc.\left(a+b+c\right)+a^2b^2c^2\)
\(=\left(a+b+c-abc\right)^2\)
Vì a,b,c thuộc Z
\(\Rightarrow\left(a+b+c-abc\right)^2\)là số chính phương
\(\hept{\begin{cases}\left(1+a^2\right)=\left(ab+bc+ca+a^2\right)=b\left(a+c\right)+a\left(a+c\right)=\left(a+b\right)\left(a+c\right)\\\left(1+b^2\right)=\left(ab+bc+ca+b^2\right)=a\left(b+c\right)+b\left(b+c\right)=\left(a+b\right)\left(b+c\right)\\\left(1+c^2\right)=\left(ab+bc+ca+c^2\right)=a\left(b+c\right)+c\left(b+c\right)=\left(a+c\right)\left(b+c\right)\end{cases}}\)
\(\Rightarrow A=\text{[}\left(a+b\right)\left(b+c\right)\left(c+a\right)\text{]}^2\Rightarrow\text{đ}pcm\)
\(\text{Đặt }\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}=k \Rightarrow\left\{{}\begin{matrix}a=kx\\b=ky\\c=kz\end{matrix}\right.\\\Rightarrow\left(ax+by+cz\right)^2=\left(kx^2+ky^2+kz^2\right)^2\\ =\left(kx^2+ky^2+kz^2\right)\left(kx^2+ky^2+kz^2\right)\\ =\left(x^2+y^2+z^2\right)\left(k^2x^2+k^2y^2+k^2z^2\right) \\ =\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\left(đpcm\right)\)