Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nối AC
tam giác ACD có HA=HD; GC=GD nên HG là đường trung bình của tam giác ACD
=> HG//AC; HG=1/2AC. (1)
Tam giác ABC có EA=EB; FB=FC nên EF là đường trung bình của tam giác ABC
=> EF//AC; EF=1/2AC. (2)
Từ (1) và (2) suy ra HG//EF; HG=EF
Tứ giác EFGH có HG//EF; HG=EF
Vậy EFGH là hình bình hành.
b)* Để hình bình hành EFGH là hình thoi, ta cần có thêm hai cạnh kề bằng nhau.
Giả sử EH=FH mà EH=1/20BD(EA=EB, HA=HD nên EH là đường trung bình của tam giác ABD).
HG=1/2AC(cmt)
nên BD=AC
Vậy để hình bình hành EFGH trở thành hình thoi thì hai đường chéo AC và BD của tứ giác ABCD phải bằng nhau.
* Để hình bình hành EFGH là hình chữ nhật, ta cần có thêm một góc vuông.
Giả sử góc H=90 độ, vì HG//AC(cmt)
HG vuông góc với HE
từ hai điều này suy ra AC cũng vuông góc với HE
lại có HE//BD(cmt)
từ hai điều này lại suy ra AC vuông góc với BD
vậy để hình bình hành EFGH là hình thoi, hai đuognừ chéo AC và BD của tứ giác ABCD phải vuông góc với nhau.
* Để hình bình hành EFGH trở thành hình vuông ta cần có thêm hai cạnh kề bằng nhau và một góc vuông.
Giả sử HE=HG => AC=BD(cmt)
H=90 độ => AC vuông góc với BD(cmt)
vậy để hình bình hành EFGH là hình vuông, hai đuognừ chéo AC và BD của tứ giác ABCD phải bằng nhau và vuông góc với nhau.
a) Xét ΔABD có
H là trung điểm AD
E là trung điểm AB
=> HE là đường trung bình ΔABD
=> HE//BD và HE = 1/2 BD (1)
CMTT => GF // BD và GF = 1/2 BD (2)
Từ (1) và (2) => HEFG là hình bình hành.
b) Để EFGH là hình chữ nhật
<=> HE = HG. Mà HE = 1/2 BD
HG = 1/2 AC
<=> BD = AC
Vậy khi hai đường chéo AC và BD của tứ giác ABCD bằng nhau thì EFGH là hình chữ nhật.
a)ta có góc FAE=góc MEA=góc MFA=90o
=>AEMF là hình chữ nhật
b) Xét \(\Delta\)FMC vuông tại F và \(\Delta\)FMA vuông tại F
MF chung
AM=CM=\(\frac{BC}{2}\)(AM là trung tuyến của BC)
Suy ra :\(\Delta FMC=\Delta FMA\)(cạnh huyền - cạnh góc vuông)
=>CF=AF (2 cạnh tương ứng)
=>F là trung điểm CA
mà F lại là trung điểm của MN
=>MANC là hình bình hành
ta lại có CA vuông góc với MN
=>MANC là hình thoi
c)
ta có MC=MB ( AM là trung tuyến của BC)
ME song song AC (ME song song FA)
=> AE=EB
=>MF=AE(AEMF là hình vuông)
mà MF=NF(N là điểm đối xứng của M qua F)
AE=EB(chưng minh trên)
=>MN=AB
Mà MN=AC( MANC là hình vuông)
nên : AB=AC
=> tam giác ABC vuông cân tại A
Vậy tam giác ABC cần vuông cân tại A thì AEMF,MANC là hinh vuông
a Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét tứ giác AECM có
N là trung điểm của AC
N là trung điểm của EM
Do đó: AECM là hình bình hành
c: Hình bình hành AECM trở thành hình chữ nhật khi MC⊥AM
=>MC⊥AB
=>ΔACB cân tại C
hay CA=CB