K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
KN
25 tháng 2 2020
Trên cạnh CA lấy điểm K sao cho CK = AB. Gọi G là giao điểm của các đường trung trực của AK và BC.
Theo tính chất đường trung trực, ta có: GA = GB, GA = GK
Xét \(\Delta GBA\)và \(\Delta GCK\)có:
AG = KG (cmt)
AB = KC (theo cách chọn điểm phụ)
GB = GC (cmt)
Do đó \(\Delta GBA\)\(=\Delta GCK\left(c-c-c\right)\)
\(\Rightarrow\widehat{GBD}=\widehat{GCE}\)(hai góc tương ứng)
Xét \(\Delta GBD\)và \(\Delta GCE\)có :
GB = GC (cmt)
\(\widehat{GBD}=\widehat{GCE}\)(cmt)
BD = CE (gt)
Do đó \(\Delta GBD\)\(=\Delta GCE\left(c-g-c\right)\)
\(\Rightarrow GD=GE\)(hai cạnh tương ứng)
Vậy đường trung trực của DE luôn đi qua điểm cố định G.(đpcm)