K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2020

Bài 1:

a) đkxđ: \(x\ne0;x\ne\pm1\)

\(D=\left(\frac{1}{1-x}+\frac{1}{1+x}\right)\div\left(\frac{1}{1-x}-\frac{1}{1+x}\right)+\frac{1}{x+1}\)

\(D=\left[\frac{1+x+1-x}{\left(1-x\right)\left(1+x\right)}\right]\div\left[\frac{1+x-1+x}{\left(1-x\right)\left(1+x\right)}\right]+\frac{1}{x+1}\)

\(D=\frac{2}{\left(1-x\right)\left(1+x\right)}\div\frac{2x}{\left(1-x\right)\left(1+x\right)}+\frac{1}{x+1}\)

\(B=\frac{1}{x}+\frac{1}{x+1}\)

\(B=\frac{2x+1}{x+1}\)

b) Ta có: \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\) đều ko thỏa mãn đkxđ

c) Khi \(D=\frac{3}{2}\)

\(\Leftrightarrow\frac{2x+1}{x+1}=\frac{3}{2}\)

\(\Leftrightarrow4x+2=3x+3\Rightarrow x=1\) không thỏa mãn đkxđ

23 tháng 8 2020

Bài 2: (Sửa đề tí nếu sai ib t lm lại nhé:)

a) đkxđ: \(x\ne\pm1\)

\(E=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right)\div\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)\)

\(E=\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\div\frac{x-1+x\left(x+1\right)+2}{\left(x-1\right)\left(x+1\right)}\)

\(E=\frac{x^2+2x+1-x^2+2x-1}{x-1+x^2+x+2}\)

\(E=\frac{4x}{\left(x+1\right)^2}\)

b) Ta có: \(x^2-9=0\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

+ Nếu: \(x=3\)

=> \(E=\frac{4.3}{\left(3+1\right)^2}=\frac{3}{4}\)

+ Nếu: \(x=-3\)

=> \(E=\frac{4.\left(-3\right)}{\left(-3+1\right)^2}=-3\)

c) Để \(E=-3\)

\(\Leftrightarrow\frac{4x}{\left(x+1\right)^2}=-3\)

\(\Leftrightarrow4x=-3x^2-6x-3\)

\(\Leftrightarrow3x^2+10x+3=0\)

\(\Leftrightarrow\left(x+3\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-\frac{1}{3}\end{cases}}\)

d) Để \(E< 0\)

\(\Leftrightarrow\frac{4x}{\left(x+1\right)^2}< 0\) , mà \(\left(x+1\right)^2>0\left(\forall x\right)\)

=> Để E < 0 => \(4x< 0\Rightarrow x< 0\)

Vậy x < 0 thì E < 0

e) Ta có: \(E-x-3=0\)

\(\Leftrightarrow\frac{4x}{\left(x+1\right)^2}=x+3\)

\(\Leftrightarrow4x=\left(x^2+2x+1\right)\left(x+3\right)\)

\(\Leftrightarrow x^3+5x^2+7x+3-4x=0\)

\(\Leftrightarrow x^3+5x^2+3x+3=0\)

Đến đây bấm máy tính thôi, nghiệm k đc đẹp cho lắm:

\(x=-4,4798...\) ; \(x=-0,2600...+0,7759...\) ; \(x=-0,2600...-0,7759...\)

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0
15 tháng 7 2018

\(E=\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}:\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\)

\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\) \(\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\sqrt{x}}+\frac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)

\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\)\(\left[\frac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)

\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

\(E=\frac{x}{\sqrt{x}-1}\)

15 tháng 7 2018

b) \(E>1\Leftrightarrow\frac{x}{\sqrt{x}-1}>1\)

\(\Leftrightarrow\frac{x}{\sqrt{x}-1}-1>0\)

\(\Leftrightarrow\frac{x}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}-1}>0\)

\(\Leftrightarrow\frac{x-\sqrt{x}+1}{\sqrt{x}-1}>0\)

\(\Leftrightarrow\frac{x-2\sqrt{x}+1+\sqrt{x}}{\sqrt{x}-1}>0\)

\(\Leftrightarrow\frac{\left(\sqrt{x}-1\right)^2+\sqrt{x}}{\sqrt{x}-1}>0\)

\(\Rightarrow\sqrt{x}-1>0\)  vì tử của phân số luôn \(\ge0\forall x\ge0\)

\(\Rightarrow x>1\)

kết hợp với ĐKXĐ \(x\ge0\Rightarrow x>1\)

vậy \(x>1\) thì \(E>1\)

6 tháng 10 2015

Câu này bạn làm tương tự như câu trên nha

tick cho mình nha

29 tháng 7 2021

I) Đk: x > 0 và x \(\ne\)9

\(D=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(D=\frac{x+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(D=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)

=> \(\frac{1}{D}=\frac{\sqrt{x}+3}{\sqrt{x}+1}=\frac{\sqrt{x}+1+2}{\sqrt{x}+1}=1+\frac{2}{\sqrt{x}+1}\)

Để 1/D nguyên <=> \(\frac{2}{\sqrt{x}+1}\in Z\)

<=> \(2⋮\left(\sqrt{x}+1\right)\) <=> \(\sqrt{x}+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

Do \(x>0\) => \(\sqrt{x}+1>1\) => \(\sqrt{x}+1=2\)

<=> \(\sqrt{x}=1\) <=> x = 1 (tm)

29 tháng 7 2021

\(E=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\cdot\frac{4\sqrt{x}}{3}\)

\(E=\frac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)

\(E=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

b) Với x\(\ge\)0; ta có:

\(E=\frac{8}{9}\) <=> \(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)

<=> \(3\sqrt{x}=2x-2\sqrt{x}+2\)

<=> \(2x-4\sqrt{x}-\sqrt{x}+2=0\)

<=> \(\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)

<=> \(\orbr{\begin{cases}x=\frac{1}{4}\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)

e) Ta có: \(E=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\ge0\forall x\in R\) (vì \(x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\))

Dấu "=" xảy ra<=> x = 0

Vậy MinE = 0 <=> x = 0

Lại có: \(\frac{1}{E}=\frac{3\left(x-\sqrt{x}+1\right)}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}-1+\frac{1}{\sqrt{x}}\right)\ge\frac{3}{4}\left(2\sqrt{\sqrt{x}\cdot\frac{1}{\sqrt{x}}}-1\right)\)(bđt cosi)

=> \(\frac{1}{E}\ge\frac{3}{2}.\left(2-1\right)=\frac{3}{2}\)=> \(E\le\frac{2}{3}\)

Dấu "=" xảy ra<=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\) <=> x = 1

Vậy MaxE = 2/3 <=> x = 1