Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a/(a+b+c)<a/(a+b)<a+c/a+b+c ( Cái này là vì a/a+b <1)
Tương tự vậy với mấy cái kia cx thế cộng theo vế là ra nha bạn
Ta có \(VP=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)\(\left(a,b,c\ne0\right)\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2a+2b+2c}{abc}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2.\left(a+b+c\right)}{abc}\)\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+0=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=VT\)
Vậy đẳng thức được chứng minh
Xét: \(1+c^2=ab+bc+ca+c^2=\left(a+c\right)\left(b+c\right)\)
Tương tự CM được:
\(1+b^2=\left(a+b\right)\left(c+b\right)\) và \(1+a^2=\left(c+a\right)\left(b+a\right)\)
Mặt khác ta tách: \(\hept{\begin{cases}a-b=\left(a+c\right)-\left(b+c\right)\\b-c=\left(a+b\right)-\left(c+a\right)\\c-a=\left(c+b\right)-\left(a+b\right)\end{cases}}\)
Thay vào ta được:
\(Vt=\frac{\left(a+c\right)-\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}+\frac{\left(a+b\right)-\left(c+a\right)}{\left(a+b\right)\left(c+a\right)}+\frac{\left(c+b\right)-\left(a+b\right)}{\left(b+c\right)\left(a+b\right)}\)
\(=\frac{1}{b+c}-\frac{1}{c+a}+\frac{1}{c+a}-\frac{1}{a+b}+\frac{1}{a+b}-\frac{1}{b+c}\)
\(=0\)
=> đpcm