Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề hơi kỳ cục đó
\(\frac{a}{1}+\frac{b}{1}+\frac{c}{1}=0\Rightarrow1\left(a+b+c\right)=a+b+c=0\)
mà bn cho gt là a+b+c = 1 là sao thế Thanh Quốc
a + b + c = 0
=> (a + b + c)2 = 0
=> a2 + b2 + c2 + 2(ab + bc + ca) = 0
=> ab + bc + ca = \(\frac{a^2+b^2+c^2}{2}\)
=> \(\left(ab+bc+ca\right)^2=\left(\frac{a^2+b^2+c^2}{2}\right)^2\)
=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2a^2bc+2ab^2c+2abc^2=\left(\frac{a^2+b^2+c^2}{2}\right)^2\)
=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=\left(\frac{a^2+b^2+c^2}{2}\right)^2\)
=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\left(\frac{a^2+b^2+c^2}{2}\right)^2\)(vì a + b + c = 0)
Lại có \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{a^2b^2+b^2c^2+a^2c^2}{a^2b^2c^2}=\frac{\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2}{\left(abc\right)^2}\)
\(=\frac{\left(\frac{a^2+b^2+c^2}{2}\right)^2}{\left(abc\right)^2}=\left(\frac{\frac{a^2+b^2+c^2}{2}}{abc}\right)^2=\left(\frac{a^2+b^2+c^2}{2abc}\right)^2\)
=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)là bình phương của 1 số hữu tỉ
ta có: (a+b+c)2 = a2 + b2 + c2
=> 2.(ab+ac+bc) = 0
ab + ac + bc = 0
=> 1/a + 1/b + 1/c = 0
Lại có: \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{abc}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{ac}-\frac{1}{bc}\right).\)
\(=0.\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{ac}-\frac{1}{bc}\right)=0\)
=> 1/a3 + 1/b3 + 1/c3 -3/abc = 0
=> 1/a3 + 1/b3 + 1/c3 = 3/abc
Ta có \(VP=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)\(\left(a,b,c\ne0\right)\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2a+2b+2c}{abc}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2.\left(a+b+c\right)}{abc}\)\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+0=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=VT\)
Vậy đẳng thức được chứng minh