K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2019

15 tháng 3 2016

( AF/FB ).(BD/DC).(CE/EA)= AF/AE.  BD/FB . CE/DC

sau đó dựa vào các tam giác AEB, BFD,DCE cùng đồng dạng với tam giác ABC

17 tháng 4 2016

 Hướng dẫn làm:
(a) Chứng minh ΔABE∼ΔACF→AEAF=ABAC→ΔAEF∼ΔABC
(b) Chứng minh BH.BE=BD.BC và CH.CF=CD.BC, từ đó suy ra điều phải chứng minh.
(c) Chứng minh ΔBHD∼ΔADC, từ đó ta có tỉ số BDHD=ADDC↔AD.HD=BD.DC
Đặt BD=x thì DC=BC−x
Khi đó 4AD.HD=x(BC−x)=−4x2+4BC.x−BC2+BC2=−(2x−BC)2+BC2≤BC2
(d) Chứng minh AKIˆ=AEIˆ
Sau đó chứng minh ΔEIA∼ΔEQH và suy ra AEIˆ=HEQˆ=HKQˆ

Đúng nha nguyễn ngọc khánh vy

17 tháng 4 2016

(a) Chứng minh ΔABE∼ΔACF→AEAF=ABAC→ΔAEF∼ΔABC
(b) Chứng minh BH.BE=BD.BC và CH.CF=CD.BC, từ đó suy ra điều phải chứng minh.
(c) Chứng minh ΔBHD∼ΔADC, từ đó ta có tỉ số BDHD=ADDC↔AD.HD=BD.DC
Đặt BD=x thì DC=BC−x
Khi đó 4AD.HD=x(BC−x)=−4x2+4BC.x−BC2+BC2=−(2x−BC)2+BC2≤BC2
(d) Chứng minh AKIˆ=AEIˆ
Sau đó chứng minh ΔEIA∼ΔEQH và suy ra AEIˆ=HEQˆ=HKQˆ

Mình đúng nha nguyễn ngọc khánh vy

4 tháng 5 2018

T.i.c.k cho mình rồi mk cũng t... cho bạn

4 tháng 5 2018

Là s bn??

30 tháng 4 2019

a, Xét tgABE và tgACF có:

góc AEB = góc CFA = 90o 

góc BAC chung

Từ 2 điều trên => tgABE đồng dạng tgACF (g.g)

=> AB/AC = AE/AF (các cặp cạnh tương ứng)

=> AB.AF = AC.AE

30 tháng 4 2019

xét tam giác ABE và tam giác ACF có : 

góc AEB = góc AFC = 90 do ...

góc CAB chung

=> tam giác ABE ~ tam giác ACF (g.g)

=> AB/AC = AE/AF

=> AB.AF = AC.AE

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F cóc

góc EAB chung

Do đó:ΔAEB\(\sim\)ΔAFC

Suy ra: AE/AF=AB/AC

hay \(AE\cdot AC=AF\cdot AB\)

b: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

góc HBD chung

Do đó:ΔBDH\(\sim\)ΔBEC

Suy ra: BD/BE=BH/BC

hay \(BD\cdot BC=BH\cdot BE\)

13 tháng 10 2023

D ở đây ra vậy em?

13 tháng 10 2023

Sửa đề: Từ C,B kẻ các đường thẳng vuông góc với AC,AB cắt nhau tại K

a: CK vuông góc AC

BH vuông góc AC

Do đó: CK//BH

BK vuông góc AB

CH vuông góc AB

Do đó: BK//CH

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

b: BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HK

=>H,M,K thẳng hàng