K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 5 2020

Để pt có 2 nghiệm dương (ko yêu cầu pb?) \(\left\{{}\begin{matrix}a\ne0\\\Delta\ge0\\x_1+x_2=-\frac{b}{a}>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\)

a/ \(\left\{{}\begin{matrix}\Delta=\left(2m-1\right)^2+4m-4\ge0\\x_1+x_2=2m+1>0\\x_1x_2=-m+1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-3\ge0\\m>-\frac{1}{2}\\m< 1\end{matrix}\right.\) \(\Rightarrow\frac{\sqrt{3}}{2}\le m< 1\)

b/ \(\left\{{}\begin{matrix}\Delta=\left(m+2\right)^2-4\left(-2m+1\right)\ge0\\-m-2>0\\-2m+1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+12m\ge0\\m< -2\\m< \frac{1}{2}\end{matrix}\right.\) \(\Rightarrow m\le-12\)

NV
8 tháng 5 2020

e/

\(\left\{{}\begin{matrix}\Delta=\left(m+1\right)^2-4m\ge0\\x_1+x_2=m+1>0\\x_1x_2=m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2\ge0\\m>-1\\m>0\end{matrix}\right.\) \(\Rightarrow m>0\)

f/

\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)\ge0\\x_1+x_2=\frac{2\left(3-2m\right)}{m-2}>0\\x_1x_2=\frac{5m-6}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\-m^2+4m-3\ge0\\\frac{3-2m}{m-2}>0\\\frac{5m-6}{m-2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\1\le m\le3\\\frac{3}{2}< m< 2\\\left[{}\begin{matrix}m< \frac{6}{5}\\m>2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

NV
8 tháng 5 2020

e/

\(\left\{{}\begin{matrix}\Delta=\left(m+1\right)^2-4\left(m-1\right)\ge0\\x_1+x_2=m+1< 0\\x_1x_2=m-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+5>0\\m< -1\\m>1\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

f/

\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(m-2\right)^2-\left(m-2\right)\ge0\\x_1+x_2=2< 0\left(vô-lý\right)\\x_1x_2=\frac{1}{m-2}>0\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

NV
8 tháng 5 2020

c/

\(\left\{{}\begin{matrix}\Delta=m^2-4\left(m-\frac{3}{4}\right)\ge0\\x_1+x_2=-m< 0\\x_1x_2=m-\frac{3}{4}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4m+3\ge0\\m>0\\m>\frac{3}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m\ge3\\\frac{3}{4}< m\le1\end{matrix}\right.\)

d/

\(\left\{{}\begin{matrix}\Delta'=4\left(2m-1\right)^2-4m\ge0\\x_1+x_2=1-2m< 0\\x_1x_2=\frac{m}{4}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-5m+1\ge0\\m>\frac{1}{2}\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge1\)

9 tháng 5 2020

dương phân biệt á bạn ơi

NV
8 tháng 5 2020

Phương trình có hai nghiệm âm phân biệt hay dương phân biệt bạn?

Hay hai nghiệm trái dấu?

NV
9 tháng 5 2020

e/

\(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-4\left(m-1\right)>0\\x_1+x_2=\frac{1-m}{2}>0\\x_1x_2=\frac{m-1}{4}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(m-5\right)>0\\m< 1\\m>1\end{matrix}\right.\)

Không tồn tại m thỏa mãn

f/

\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(m-2\right)^2-\left(m-2\right)>0\\x_1+x_2=2>0\\x_1x_2=\frac{1}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\\left(m-2\right)\left(m-3\right)>0\\m-2>0\end{matrix}\right.\)

\(\Rightarrow m>3\)

NV
9 tháng 5 2020

c/

\(\left\{{}\begin{matrix}\Delta=\left(m-2\right)^2-4\left(m+1\right)>0\\x_1+x_2=2-m>0\\x_1x_2=m+1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-8m>0\\m< 2\\m>-1\end{matrix}\right.\)

\(\Rightarrow-1< m< 0\)

d/

\(\left\{{}\begin{matrix}\Delta=\left(m-3\right)^2+4\left(m+1\right)>0\\x_1+x_2=3-m>0\\x_1x_2=-m-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+13>0\\m< 3\\m< -1\end{matrix}\right.\)

\(\Rightarrow m< -1\)

26 tháng 11 2021

\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)

\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)

\(b,\left(m-1\right)x^2-2mx+m-2=0\)

\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)

\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)

\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)

\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)

\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)

 

 

 

NV
11 tháng 9 2021

\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)

\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)

14 tháng 5 2020

X2 nha giúp mình làm với mình cảm ơn

14 tháng 5 2020

à câu K + L + N, mk viết lộn

25 tháng 12 2018

f(x) = (m + 1) x 2  - 2(3 - 2m)x + m + 1 ≥ 0 (1)

Với m = -1:

(1) ⇔ -10x ≥ 0 ⇔ x ≤ 0

Vậy với m = -1 bất phương trình (1) có nghiệm x ≤ 0

Suy ra, m = -1 (loại)

Với m ≠ -1:

f(x) = (m +1 ) x 2  - 2(3 - 2m)x + m + 1

Δ' = [-(3 - 2m) ] 2  - (m + 1)(m + 1) = (2m - 3 ) 2  - (m + 1 ) 2

= (2m - 3 + m + 1)(2m - 3 - m - 1) = (3m - 2)(m - 4)

Để bất phương trình (1) vô nghiệm thì:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 3)

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 3)

Vậy không có giá trị nào của m để bất phương trình (1) vô nghiệm

8 tháng 5 2020

giúp mình 3 câu nữa đi

NV
7 tháng 5 2020

Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\)

a/ \(1\left(m+1\right)< 0\Rightarrow m< -1\)

b/ \(-3\left(4-m^2\right)< 0\Leftrightarrow m^2-4< 0\Rightarrow-2< m< 2\)

c/ \(\left(m-1\right)\left(m^2+4m-5\right)< 0\)

\(\Leftrightarrow\left(m-1\right)^2\left(m+5\right)< 0\Rightarrow m< -5\)

d/ \(\left(m+1\right)\left(m+1\right)< 0\Leftrightarrow\left(m+1\right)^2< 0\)

\(\Rightarrow\) Ko tồn tại m thỏa mãn

e/ \(2m\left(-m^2-2m+3\right)< 0\)

\(\Leftrightarrow2m\left(1-m\right)\left(m+3\right)< 0\Rightarrow\left[{}\begin{matrix}-3< m< 0\\m>1\end{matrix}\right.\)

f/ \(4\left(2m^2-5m+2\right)< 0\Rightarrow\frac{1}{2}< m< 2\)

g/ \(\left(6-m\right)\left(-m^2-2m+3\right)< 0\)

\(\Leftrightarrow\left(6-m\right)\left(1-m\right)\left(m+3\right)< 0\Rightarrow\left[{}\begin{matrix}m< -3\\1< m< 6\end{matrix}\right.\)

h/ \(m\left(2m-1\right)< 0\Rightarrow0< m< \frac{1}{2}\)

18 tháng 7 2017

(m - 2)x2 + 2(2m - 3)x + 5m - 6 = 0 (1)

- Nếu m - 2 = 0 ⇔ m = 2, khi đó phương trình (1) trở thành:

2x + 4 = 0 ⇔ x = -2 hay phương trình (1) có một nghiệm

Do đó m = 2 không phải là giá trị cần tìm.

- Nếu m - 2 ≠ 0 ⇔ m ≠ 2 ta có:

Δ' = (2m - 3)2 - (m - 2)(5m - 6)

= 4m2 - 12m + 9 - 5m2 + 6m + 10m - 12

= -m2 + 4m - 3 = (-m + 3)(m - 1)

(1) vô nghiệm ⇔ Δ' < 0 ⇔ (-m + 3)(m - 1) < 0 ⇔ m ∈ (-∞; 1) ∪ (3; +∞)

Vậy với m ∈ (-∞; 1) ∪ (3; +∞) thì phương trình vô nghiệm.