Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)
\(\Leftrightarrow a^2b+bc^2\ge2abc\)
\(\Leftrightarrow a^2b+bc^2-2abc\ge0\)
\(\Leftrightarrow\left(a\sqrt{b}-c\sqrt{b}\right)^2\ge0\)(đúng)
\(\RightarrowĐPCM\)
b/ Áp dụng câu a ta có
\(\frac{ab}{c}+\frac{bc}{a}\ge2b\)
\(\frac{ab}{c}+\frac{ca}{b}\ge2a\)
\(\frac{bc}{a}+\frac{ac}{b}\ge2c\)
Cộng 3 cái đó vế theo vế được
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira,
Nguyễn Thị Ngọc Thơ, @tth_new
help me! cần gấp lắm ạ!
thanks nhiều!
trả lời
dùng bất đẳng thức cosi cho 2 số ko âm
sử dụng cộng mỗi cặp trên
đc 3 cặp
cộng lại là ra
\(\frac{bc}{a}+\frac{ac}{b}=c\left(\frac{a}{b}+\frac{b}{c}\right)\ge2c\)
Tương tự ....
áp dụng BĐT : \(x^3+y^3\ge xy\left(x+y\right)\) ta có:
\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\frac{a^3}{b}+b^2\ge a\left(a+b\right)\) (vì b>0)
\(\Leftrightarrow\frac{a^3}{b}+b^2\ge a^2+ab\) (1)
c/m tương tự ta đc: \(\frac{b^3}{c}+c^2\ge b^2+bc\) (2)
\(\frac{c^3}{a}+a^2\ge c^2+ca\) (3)
Từ (1),(2),(3)=> \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\) =>đpcm
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Ta có \(\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{a\left(a+b+c\right)+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(=\sqrt{\frac{bc}{a+b}}.\sqrt{\frac{bc}{a+c}}\le\frac{1}{2}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right)\)
Tương tự với hai BĐT còn lại và cộng theo vế rồi rút gọn ta được \(VT\le\frac{a+b+c}{2}=\frac{1}{2}\left(đpcm\right)\)
Đẳng thức xảy ra khi a= b=c=1/3
\(\text{Áp dụng bất đẳng thức cô-si ta có: }\)
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{acb^2}{ac}}=2\sqrt{b^2}=2b\)
\(\text{tương tự: }\frac{bc}{a}+\frac{ca}{b}\ge2c;\frac{ca}{b}+\frac{ab}{c}\ge2a\)
\(\text{cộng vế theo vế ta được: }2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Leftrightarrow\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)
\(\text{BĐT đc c/m}\)
Áp dụng BĐT Cô - si ta có : \(\hept{\begin{cases}\frac{ab}{c}+\frac{bc}{a}\ge\sqrt{\frac{ab^2c}{ac}}=2\sqrt{b^2}=2b\\\frac{bc}{a}+\frac{ca}{b}\ge\sqrt{\frac{abc^2}{ab}}=2\sqrt{c^2}=2c\\\frac{ab}{c}+\frac{ca}{b}\ge\sqrt{\frac{bca^2}{bc}}=2\sqrt{a^2}=2a\end{cases}}\)
Cộng vế theo vế ta được :
\(\frac{ab}{c}+\frac{bc}{a}+\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}+\frac{ca}{b}\ge2a+2b+2c\)
\(\Leftrightarrow2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
a) Áp dụng BĐT Cô si cho 2 số dương ta có :
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}\ge2b\)
b) \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
CMTT như câu a ta đc :
\(\frac{ab}{c}+\frac{bc}{a}\ge2b;\frac{ab}{c}+\frac{ca}{b}\ge2a;\frac{bc}{a}+\frac{ac}{b}\ge2c\)
Do đó : \(\frac{ab}{c}+\frac{bc}{a}+\frac{ab}{c}+\frac{ca}{b}+\frac{bc}{a}+\frac{ca}{b}\ge2a+2b+2c\)
\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\left(đpcm\right)\)
a. Áp dung BĐT AM-GM:
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2\sqrt{b^2}=2b\)
b. Áp dung BĐT AM-GM:
\(\frac{ab}{c}+\frac{bc}{a}\ge2b\)
\(\frac{bc}{a}+\frac{ca}{b}\ge2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2a\)
\(\Rightarrow2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
Xảy ra đẳng thức khi \(a=b=c>0\)