K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

Đó, đúng ko, câu d đề sai mừ

30 tháng 3 2020

E B A C M D O

a) Xét tam giác CMA và tam giác BMD có : 

\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)

=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)

=> ACBD là hình bình hành 

=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm 

b) Xét tam giác ABC và tam giác CDA có : 

\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)  

        Chung AC 

=> AD=BC

=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm 

c) Xét tam giác ABC có : 

M là trung điểm BC 

A là trung điểm CE 

Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm ) 

e) AM //BE => AD // BE 

Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B 

=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)

Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm 

=> E,O , D thẳng hàng => đpcm 

1,Cho tam giác ABC cân tại A . Kẻ AM vuông góc với BC tại Ma, Chứng minh tam giác ABM = tam giác ACM b, Biết AB = 20cm ; BC =  24cm . Tính MB và AMc, Kẻ MH vuông góc với AB tại H ; MK vuông góc với AC tại K Chứng minh tam giac AHK cân tại A . Tính MH2,Cho tam giác ABC vuông tại A  có AB = 3cm ; AC = 4cm . Gọi AM là đường trung tuyến của tam giác ABC , trên tia đối của tia MA lấy điểm D sao cho AM = MDa, Tính BCb,Chứng minh...
Đọc tiếp

1,Cho tam giác ABC cân tại A . Kẻ AM vuông góc với BC tại M

a, Chứng minh tam giác ABM = tam giác ACM 

b, Biết AB = 20cm ; BC =  24cm . Tính MB và AM

c, Kẻ MH vuông góc với AB tại H ; MK vuông góc với AC tại K 

Chứng minh tam giac AHK cân tại A . Tính MH

2,Cho tam giác ABC vuông tại A  có AB = 3cm ; AC = 4cm . Gọi AM là đường trung tuyến của tam giác ABC , trên tia đối của tia MA lấy điểm D sao cho AM = MD

a, Tính BC

b,Chứng minh AB = CD ; AB song song với CD

c,Chứng minh góc BAM > góc CAM 

d, Gọi H là trung điểm của BM , trên đường thẳng AH lấy E sao cho AH = HE , CE cắt AD tại F . Chứng minh F là trung điểm của CE

3, Chứng minh tổng sau không phải là số nguyên :

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{44^2}+\frac{1}{45^2}\)

4, Tìm x;y biết : \(\frac{x}{y}=\frac{-3}{8}\)và \(x^2-y^2=\frac{-44}{5}\)

 

0
26 tháng 2 2020

A B C D M O E (Hình ảnh chỉ mang tính chất minh họa )

a)

+) Xét \(\Delta\)ABM và \(\Delta\)DCM có :

AM = DM (gt)

góc AMB = góc DMC ( đối đỉnh )

BM = CM (gt)

=> \(\Delta\)ABM = \(\Delta\)DCM ( c.g.c )

=> AB = DC ( hai canh tương ứng )

+) Do \(\Delta\)ABM = \(\Delta\)DCM (cmt)

=> góc ABM = góc DCM ( hai góc tương ứng )

Mà hai góc này ở vị trí sole trong

=> AB // DC

b) Ta có : AB // CD (cmt)

 AB \(\perp\) AC (gt)

=> DC \(\perp\)AC

Xét \(\Delta\)ABC và \(\Delta\)CDA có :

AB = CD (cmt)

góc BAC = góc DCA ( = 90 độ )

AC chung

=> \(\Delta\)ABC = \(\Delta\)CDA ( c.g.c )

=> BC = DA ( hai cạnh tương ứng )

Mà : \(\frac{DA}{2}=MD=MA\Rightarrow MA=\frac{1}{2}BC\) (đpcm)

c) Xét \(\Delta\)BAE và \(\Delta\)BAC có :

AB chung

góc BAE = góc BAC ( = 90 độ )

AE = AC (gt)

=> \(\Delta\)BAE = \(\Delta\)BAC ( c.g.c )

=> BE = BC và góc BEA = góc  BCA ( hai góc tương ứng )  (1)

Ta chứng minh được ở phần b) có : AM = \(\frac{1}{2}BC=MC\)

=> \(\Delta\)AMC cân tại M

=> góc MAC = góc MCA 

hay góc MAC = góc BCA (2)

Từ (1) và (2) => góc MAC = góc BEC

Mà hai góc này ở vị trí đồng vị

=> AM // BE (đpcm)

d) Câu này mình không hiểu đề lắm !!

Mình nghĩ là : \(\Delta\)ABC cần thêm điều kiện góc B = 30 độ thì sẽ có điều trên.

e) Ta có : BE // AM

=> BE // AD

=> góc EBO = góc DAO

Xét \(\Delta\)EBO và \(\Delta\)DAO có :

BE = AD ( = BC )

góc EBO = góc DAO (cmt)

OB = OA (gt)

=> \(\Delta\)EBO = \(\Delta\)DAO ( c.g.c )

=> góc EOB = góc DOA ( hai góc tương ứng )

Mà : góc EOB + góc EOA = 180 độ

=> góc DOA + góc EOA = 180 độ

hay : góc EOD = 180 độ

=> Ba điểm E, O, D thẳng hàng (đpcm)

26 tháng 2 2020

Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath

28 tháng 1 2019

tu ve hinh :

a, xet tamgiac MBA va tamgiac MDC co :

goc BMA = goc DMC (doi dinh)

BM = CM do M la trung diem cua BC (GT)

MA = MD (GT)

=> tamgiac MBA = tamgiac MDC (c - g - c)

=> AB = DC (dn) 

tamgiac MBA = tamgiac MDC => goc CDM = goc MAB ma 2 goc nay slt

=> AB // CD (dh)

b, co tamgiac ABC vuong tai A => AB | AC (dn) ; AB // DC (cau a)

=> AC | DC (dl) => tamgiac ACD vuong tai C (dn) 

tamgiac MBA = tamgiac MDC => AB = CD (dn)

goc BAC = goc DCA = 90o do tamgiac ABC vuong tai A va tamgiac DCA vuong tai C

xet tamgiac ACB va tamgiac CAD co AC chung

=> tamgiac ACB = tamgiac CAD (2cgv)

=> BC = AD (dn)

M la trung diem cua BC => M la trung diem cua AD => AM = AD/2 (tc)

=> AM = BC/2

11 tháng 7 2015

Nhiều quá, chắc không làm nổi

19 tháng 7 2015

làm xong có lẹ mk thành thần đất sét mất rồi

4 tháng 2 2018

\(c)\)\(\widehat{BAC}\)= 90o

\(\Rightarrow\)\(\widehat{BAE}\)= 90o ( kề bù vs góc BAC )

Xét \(\Delta ABC\) và\(\Delta ABE\) :

\(\widehat{BAC}\) = \(\widehat{BAE}\)( =90o)

\(EA=AC\)( gt )

\(BA\): Là cạnh chung

\(\Rightarrow\Delta ABC=\Delta ABE(c.g.c)\)

Mà ở câu a) Ta đã chứng minh \(\Delta ABC=\Delta CDA(c.g.c)\)

\(\Rightarrow\)\(\Delta ABE=\Delta DCA\): => góc BEA = góc DAC ( 2 góc t.ứ)

Mà 2 góc BEA và DAC nằm trong vị trí so le trong:

\(\Rightarrow BE//AM\)

\(d)\)\(CM:\)\(\Delta ABC\)Là tam giác đều