Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm là bậc nhất khi:
a. \(3m-2\ne0\Rightarrow m\ne\dfrac{2}{3}\)
b. \(3-m>0\Rightarrow m< 3\)
c. \(\left\{{}\begin{matrix}2m-1\ne0\\m+2\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\m\ne-2\end{matrix}\right.\)
d. \(\left\{{}\begin{matrix}m^2-4=0\\m+2\ne0\end{matrix}\right.\) \(\Rightarrow m=2\)
a: ĐKXĐ: \(m\ne\dfrac{2}{3}\)
b: ĐKXĐ: \(m< 3\)
c: ĐKXĐ: \(\left[{}\begin{matrix}m\ge\dfrac{1}{2}\\m< -2\end{matrix}\right.\)
d: ĐKXĐ: \(m=2\)
a.
Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)
b.
Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)
\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)
c.
Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)
\(\Rightarrow m>-\dfrac{3}{2}\)
Lời giải:
a. $y=mx-x^2-2x+mx^2+m=x^2(m-1)+x(m-2)+m$
Lấy $x_1,x_2\in R$ sao cho $x_1\neq x_2$
$y(x_1)=x_1^2(m-1)+x_1(m-2)+m$
$y(x_2)=x_2^2(m-1)+x_2(m-2)+m$
Để hàm đồng biến thì:
$\frac{y(x_1)-y(x_2)}{x_1-x_2}>0$
$\Leftrightarrow \frac{x_1^2(m-1)+x_1(m-2)+m-[x_2^2(m-1)+x_2(m-2)+m]}{x_1-x_2}>0$
$\Leftrightarrow \frac{(m-1)(x_1^2-x_2^2)+(m-2)(x_1-x_2)}{x_1-x_2}>0$
$\Leftrightarrow (m-1)(x_1+x_2)+(m-2)>0$
Với mọi $x_1,x_2\in\mathbb{R}$ thì không có cơ sở để tìm $m$ sao cho hàm đồng biến.
b.
Xét tương tự câu 1, với $x_1\neq x_2\in \mathbb{R}$ thì hàm đồng biến khi:
$(m^2-3m+2)(x_1+x_2)+(m-1)>0$
Với mọi $x_1, x_2\in\mathbb{R}$ thì điều này xảy ra khi:
$m^2-3m+2=0$ và $m-1>0$
$\Leftrightarrow (m-1)(m-2)=0$ và $m-1>0$
$\Leftrightarrow m=2$
a/ Để hàm số này là hàm bậc nhất thì
\(\hept{\begin{cases}\left(3n-1\right)\left(2m+3\right)=0\\4m+3\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=\frac{1}{3}\\m=\frac{-3}{2}\end{cases}}\)
Các câu còn lại làm tương tự nhé bạn
a) Để y là hàm số bậc nhất
\(thì\Rightarrow\left\{{}\begin{matrix}\left(3m-1\right)\left(2n+3\right)=0\\4n+3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}3m-1=0\\2n+3=0\end{matrix}\right.\\4n\ne-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}m=\dfrac{1}{3}\\n=-\dfrac{3}{2}\end{matrix}\right.\)
Vậy để y là hàm số bậc nhất thì \(m=\dfrac{1}{3}\) hoặc \(n=-\dfrac{3}{2}\)
b;c Tương tự.
Xét phương trình x 2 – (2m – 3)x + m 2 – 3m = 0 có a = 1 ≠ 0 và
∆ = ( 2 m – 3 ) 2 – 4 ( m 2 – 3 m ) = 9 > 0
Phương trình luôn có hai nghiệm phân biệt x 1 ; x 2
Áp dụng định lý Vi-ét ta có: x 1 + x 2 = 2 m – 3 ; x 1 . x 2 = m 2 – 3 m
Ta có 1 < x 1 < x 2 < 6
⇔ x 1 − 1 x 2 − 1 > 0 x 1 + x 2 > 1 x 1 − 6 x 2 − 6 > 0 x 1 + x 2 < 12 ⇔ x 1 x 2 − x 1 + x 2 + 1 > 0 x 1 + x 2 > 1 x 1 x 2 − 6 x 1 + x 2 + 36 > 0 x 1 + x 2 < 12 ⇔ m 2 − 3 m − 2 m + 3 + 1 > 0 2 m − 3 > 1 m 2 − 3 m − 6 2 m − 3 + 36 > 0 2 m − 3 < 12 ⇔ m 2 − 5 m + 4 > 0 2 m > 4 m 2 − 15 m + 54 > 0 2 m < 15 ⇔ m < 1 m > 4 m > 2 m < 6 m > 9 m < 15 2
⇔ 4 < m < 6
Đáp án: D
Thay x = −3 vào phương trình
(m – 2)x2 – (m2 + 1)x + 3m = 0, ta có:
(m – 2) (−3)2 – (m2 + 1) (−3) + 3m = 0
⇔ 9m – 18 + 3m2 + 3 + 3m = 0
⇔ 3m2 + 12m – 15 = 0
⇔ m2 + 4m – 5 = 0
⇔ m2 – m + 5m – 5 = 0
⇔ m (m – 1) + 5 (m – 1) = 0
⇔ (m – 1) (m + 5) = 0 ⇔ m = 1 m = − 5
Suy ra tổng các giá trị của m là (−5) + 1 = −4
Đáp án cần chọn là: B
a: Để đây là hàm số bậc nhất thì (3m-1)(2m+3)<>0
hay \(m\in\left\{\dfrac{1}{3};-\dfrac{3}{2}\right\}\)
c: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m^2-5m+6=0\\m^2+mn+6n^2< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;3\right\}\\m^2+mn+6n^2< >0\end{matrix}\right.\)
Trường hợp 1: m=2
\(\Leftrightarrow4+2n+6n^2< >0\)
Đặt \(6n^2+2n+4=0\)
\(\text{Δ}=2^2-4\cdot6\cdot4=4-96=-92< 0\)
Do đó: \(4+2n+6n^2< >0\forall n\)
Trường hợp 2: m=3
\(\Leftrightarrow9+3n+6n^2< >0\)
Đặt \(6n^2+3n+9=0\)
\(\text{Δ}=3^2-4\cdot6\cdot9=9-216=-207< 0\)
Do đó: \(6n^2+3n+9\ne0\forall n\)
Vậy: m=2 hoặc m=3