Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a. $2^{29}< 5^{29}< 5^{39}$
$\Rightarrow A< B$
b.
$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$
$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$
$=(1+3)(3+3^3+3^5+...+3^{2009})$
$=4(3+3^3+3^5+...+3^{2009})\vdots 4$
Mặt khác:
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$
Bài 1:
c.
$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$
$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$
$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$
$\Rightarrow A=\frac{3^{101}+1}{4}$
Bài 5 :
S = 1 + 3 - 5 - 7 + 9 + 11 - ... - 397 - 399
S = 1 + (3 - 5 - 7 + 9) + (11 - 13 - 15 + 17) + ... + (387 - 389 - 391 + 393) + (395 - 397 - 399)
S = 1 + 0 + 0 + ... + 0 + (- 401)
S = 1 - 401
S = - 400
Bài 5
A= 1+3-5-7+9+11-13-15+...-397-399
A= ( 1+3-5-7)+( 9+11-13-15)+...+( 393+395-397-399)
A= -8 -8 -...-8
A = -8.50 ( từ 1 đến 399 có 200 số, chia làm 4 cặp)
A= -400
Bài 2:
a: =>x-1=1 hoặc x-1=-1
=>x=2 hoặc x=0
b: =>x+1=-1
hay x=-2
c: =>(135-7x):9=8
=>135-7x=72
=>7x=63
hay x=9
d: =>(x+7)(x-3)<0
=>-7<x<3
e: \(\Leftrightarrow3^{x-3}=18+9=27\)
=>x-3=3
hay x=6
f: =>4-2x=0
hay x=2
ta có số các số hạng là 398-1+1=398 số hạng
a) A=(1-2)+(3-4)+(5-6)+.......+(397-398)
A=(-1)+(-1)+.....+(-1)
có 398/2=199 cặp
vậy A=(-1)*199=-199
\(A=1-2+3-4+5-6+...+397-398\)
\(A=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(397-398\right)\)
\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+...\left(-1\right)\)
\(A=\left(-1\right)\cdot199\)
\(A=-199\)
\(B=1+3-5-7+9+11-...+393-395-397-399\)( chỗ này mình cố ý viết thêm để dễ nhìn )
\(B=1+\left(3-5-7+9\right)-\left(11-13-15+17\right)-...-\left(387-389-391+393\right)-\left(395-397-399\right)\)
\(B=1+0-0-...-0-\left(-401\right)\)
\(B=1-\left(-401\right)\)
\(B=402\)
Ta có: 3A = 3.(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−1
⇒ A = 3101−1
2
Vậy A = 3101−1
2