Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 1/3 ; 1/15 ; 1/35;...
<=> 1/1.3 ; 1/3.5 ; 1/5.7
=> chữ số thứ 100 là: 1/199.201
Ta có: \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{199.201}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{199}-\frac{1}{201}\)
\(=1-\frac{1}{201}=\frac{200}{201}\)
S = 1\(\dfrac{1}{3}\).1\(\dfrac{1}{8}\).1\(\dfrac{1}{15}\).1\(\dfrac{1}{24}\).1\(\dfrac{1}{35}\)....
S = \(\dfrac{4}{3}\).\(\dfrac{9}{8}\).\(\dfrac{16}{15}\).\(\dfrac{25}{24}\).\(\dfrac{36}{35}\)....
S = \(\dfrac{2^2}{1.3}\).\(\dfrac{3^2}{2.4}\).\(\dfrac{4^2}{3.5}\).\(\dfrac{5^2}{4.6}\).\(\dfrac{6^2}{5.7}\)...
Phân số thứ 100 của dãy số trên là: \(\dfrac{101^2}{100.102}\)
Tích của 100 số đầu tiên của dãy trên là:
S = \(\dfrac{2^2}{1.3}\).\(\dfrac{3^2}{2.4}\).\(\dfrac{4^2}{3.5}\).\(\dfrac{5^2}{4.6}\).\(\dfrac{6^2}{5.7}\)....\(\dfrac{101^2}{100.102}\)
S = \(\dfrac{\left(1.2.3...100.101\right)\times\left(2.3.4.5...101\right)}{\left(1.2.3.4...100\right)\times\left(3.4.5....101.102\right)}\)
S = \(\dfrac{101.2}{1.102}\)
S = \(\dfrac{101}{51}\)
51xS = \(\dfrac{101}{51}\) x 51 = 101
gCâu1: Tính tổng 100 số hạng đầu tiên của các dãy sau
a)1/3 ; 1/15 ; 1/35 ;.......
b) 1/5; 1/45 ; 1/11
Số hạng thứ 50 của dãy là: \(\frac{1}{100.102}\)
Tổng 50 số hạng đầu của dãy là:\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{100.102}=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{100}-\frac{1}{102}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{102}\right)=\frac{1}{2}.\frac{25}{51}=\frac{25}{102}\)
phân số thứ 50 là 1/98.100
1/2.4+1/4.6+1/6.8+.......+1/98.100
=2.(1/2-1/4+1/4-1/6+1/6-1/8+.........+1/98-1/100).1/2
=(1-1/2+1/2-1/3+1/3-1/4+...........+1/49-1/50).1/2
=(1-1/50).1/2
=49/50.1/2
=49/100
Ta có chữ số thứ 100 của dãy ( 1/2.4 ; 1/4.6 ; 1/6.8;... ) là: 1/200.202
Ta có: \(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{200.202}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{200}-\frac{1}{202}\)
\(=\frac{1}{2}-\frac{1}{202}\)
\(=\frac{50}{101}\)