K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2023

S = 1 + 2 + 2² + 2³ + 2⁴ + ... + 2¹⁰⁰

2S = 2 + 2² + 2³ + 2⁴ + ... + 2¹⁰¹

S = 2S - S

= (2 + 2² + 2³ + ... + 2¹⁰¹) - (1 + 2 + 2² + ... + 2¹⁰⁰)

= 2¹⁰¹ - 1

------------

S = 1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101

3S = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98) + 100.101.(102 - 99)

= 1.2.3 - 1.2.3 + 2

3.4 - 2.3.4 + 3.4.5 - ... - 98.99.100 + 99.100.101 - 99.100.101 + 100.101.102

= 100.101.102

S = 100 . 101 . 102 : 3

= 343400

------------

Q = 1² + 2² + 3² + ... + 100² + 101²

= 101.102.(2.101 + 1) : 6

= 348551

3 tháng 4 2016

A = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100 + 100.101

3.A = 1.2.3 + 2.3.3 +3.4.3 + ... + 100.101.3

3A= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 100.101.(102 - 99)

3A = 1.2.3 + 2.3.4 - 1.2.3 + 2.3.4 -3.4.5 + ... +99.100.101 -100.101.102

3A = 99.100.101

A = 99.100.101 : 3

A = 33.100.101

Vậy A = 33. 100 .101 (Tự tính)

6 tháng 4 2016

A=1.2+2.3+3.4+.....+99.100+100.101

12 tháng 12 2023

các bạn giúp mk với

 

12 tháng 12 2023

A = 1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101

⇒ 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3 + 100.101.3

= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98) + 100.101.(102 - 99)

= 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 + ... - 98.99.100 + 99.100.101 - 99.100.101 + 100.101.102

= 100.101.102

= 1030200

⇒ A = 1030200 : 3

= 343400

8 tháng 9 2018

Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100

=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 99.100.101

=> 3S = 99.100.101

=> S = \(\frac{99.100.101}{3}=333300\)

NM
11 tháng 2 2021

ta xét

\(S\left(n\right)=1.2+2.3+..+n\left(n-1\right)\)

\(\Rightarrow3S\left(n\right)=1.2.3+2.3.3+..+3.n.\left(n-1\right)\)

\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+..+n\left(n-1\right)\left(n+1-\left(n-2\right)\right)\)

\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..+n\left(n-1\right)\left(n+1\right)-n\left(n-1\right)\left(n-2\right)\)

\(\Leftrightarrow3S\left(n\right)=n\left(n-1\right)\left(n+1\right)\Rightarrow S\left(n\right)=\frac{n\left(n-1\right)\left(n+1\right)}{3}\)

Áp dụng ta có \(S\left(100\right)=\frac{99.100.101}{3}=333300\)

22 tháng 7 2021

`S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.`

`3S =  1.2.3 + 2.3.(4-1) + 3.4.(5-4) + 4.5.(6-3) + ... + 99.100.(101-98)`

`3S =  1.2.3 + 2.3.4-1.2.3 + 3.4.5-4.5.6 + 4.5.6-3.4.5 + ... + 99.100.101-98.99.100`

`3S =  99.100.101`

`S = 33.100.101`

`S = 333300`

3S=1.2(3-0)+2.3(4-1)+.....+99.100(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+4.5.6-2.3.4+....+99.100.101-98-99-100

=99.100.101

S=33.100.101

=333300

7 tháng 5 2016

 S=1.2+ 2.3+4,5.......+99.100 
Nhân cả 2 vế với 3, ta được: 
3S=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3 
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98) 
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100 
= 99.100.101 
----> S = (99.100.101):3 
 S= 333300 
Vậy A=333300 

7 tháng 5 2016

S = 1.2 + 2.3 + 3.4 + 4.5 +...+ 99.100

S = 1.100

S = 100

2 tháng 4 2018

Ta có: \(S=1.2+2.3+3.4+...+99.100\)

\(\Rightarrow3S=1.2.3+2.3.3+3.3.4+....+99.100.3\)

\(\Rightarrow3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)....99.100.\left(101-98\right)\)

\(\Rightarrow3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(\Rightarrow3S=99.100.101\)

\(\Rightarrow S=\frac{99.100.101}{3}=\frac{999900}{3}=333300\)

2 tháng 4 2018

S=  1.2 + 2.3 +... + 99.100

=>S= \(\frac{99.100.101}{3}\)=333300

20 tháng 12 2015

S=1.2+2.3+3.4+...+99.100

3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)

3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

3S=99.100.101

S=(99.100.101):3=333300