K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: \(=\sqrt{32.4}=\dfrac{9}{5}\sqrt{10}\)

b: \(=\sqrt{5\cdot5\cdot7\cdot7\cdot11\cdot11}=5\cdot7\cdot11=385\)

c: \(=5-2\sqrt{6}\)

d: \(=18-1=17\)

e: \(=3\sqrt{2}-2\sqrt{3}+7\sqrt{3}-7\sqrt{2}=-4\sqrt{2}+5\sqrt{3}\)

10 tháng 7 2017

\(A=\sqrt{8}-\sqrt{7}+5\sqrt{7}+2\sqrt{2}\\ =2\sqrt{2}-\sqrt{7}+5\sqrt{7}+2\sqrt{2}\\ =4\sqrt{2}+4\sqrt{7}\)

10 tháng 7 2017

\(B=\left(3+2\sqrt{6}+2\right)\left(25-20\sqrt{6}+24\right)\sqrt{3-2\sqrt{6}+2}\\ =\left(\sqrt{3}+\sqrt{2}\right)^2\left(5-2\sqrt{6}\right)^2\left(\sqrt{3}-\sqrt{2}\right)\\ =\left(\sqrt{3}+\sqrt{2}\right)\left(3-2\sqrt{6}+2\right)^2\\ =\left(\sqrt{3}-\sqrt{2}\right)^3\\ =9\sqrt{3}-11\sqrt{2}\)

17 tháng 7 2021

đó là số 2 ko phải chữ s mik xin lỗi

11 tháng 8 2018

\(a.\sqrt{\left(1-\sqrt{5}\right)^2}+1=\left|1-\sqrt{5}\right|+1=\sqrt{5}-1+1=\sqrt{5}\)

\(b.\sqrt{3+2\sqrt{2}}-2=\sqrt{\left(\sqrt{2}+1\right)^2}-2=\sqrt{2}+1-2=\sqrt{2}-1\)

\(c.\sqrt{b^2-b+\dfrac{1}{4}}-\left(2b-\dfrac{1}{2}\right)=\sqrt{\left(b-\dfrac{1}{2}\right)^2}-2b+\dfrac{1}{2}=b-\dfrac{1}{2}-2b+\dfrac{1}{2}=-2b\)

\(d.\sqrt{7+2\sqrt{10}}=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}=\sqrt{5}+\sqrt{2}\)

\(e.\sqrt{11-4\sqrt{7}}=\sqrt{\left(\sqrt{7}-2\right)^2}=\sqrt{7}-2\)

\(g.3x+\sqrt{x^2-2x+1}=3x+\sqrt{\left(x-1\right)^2}\)

* \(x\ge1\Rightarrow3x+\left|x-1\right|=3x+x-1=4x-1\)

* \(x< 1\Rightarrow3x+\left|x-1\right|=3x+1-x=2x+1\)

\(h.\sqrt{y+2\sqrt{y^2-2y+1}}=\sqrt{y+2\sqrt{\left(y-1\right)^2}}=\sqrt{y+2y-2}=\sqrt{3y-2}\left(y\ge1\right)\) hoặc: \(\sqrt{y+2-2y}=\sqrt{-y+2}\left(y< 1\right)\)

\(H=\sqrt{17-2\sqrt{32}}+\sqrt{17+2\sqrt{32}}\)

\(H^2=17-2\sqrt{32}+17+2\sqrt{32}+2\sqrt{\left(17-2\sqrt{32}\right)\left(17+2\sqrt{32}\right)}=34+2\sqrt{161}\)

\(H=\sqrt{34+2\sqrt{161}}\)

\(k.\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)

a: \(A=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}-\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\sqrt{2}-\sqrt{2}=0\)

b: \(B=\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)=1-2=-1\)

c: \(B=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{-\left(\sqrt{3}-1\right)}\right)\cdot\left(\sqrt{3}-\sqrt{2}\right)\)

\(=-\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)\)

\(=-\sqrt{6}+2\)

17 tháng 5 2021
) V T = ( 2 √ 3 − √ 6 √ 8 − 2 − √ 216 3 ) ⋅ 1 √ 6 = ( √ 2 ⋅ √ 2 ⋅ √ 3 − √ 6 √ 2 2 ⋅ 2 − 2 − √ 6 2 .6 3 ) ⋅ 1 √ 6 = ( √ 2 ⋅ √ 6 − √ 6 2 √ 2 − 2 − 6 . √ 6 3 ) ⋅ 1 √ 6 = [ √ 6 ( √ 2 − 1 ) 2 ( √ 2 − 1 ) − 6 √ 6 3 ] ⋅ 1 √ 6 = ( √ 6 2 − 2 √ 6 ) ⋅ 1 √ 6 = ( √ 6 2 − 4 √ 6 2 ) ⋅ 1 √ 6 = ( − 3 2 √ 6 ) ⋅ 1 √ 6 = − 3 2 = − 1 , 5 = V P . b) V T = ( √ 14 − √ 7 1 − √ 2 + √ 15 − √ 5 1 − √ 3 ) : 1 √ 7 − √ 5 = ( √ 7 ⋅ √ 2 − √ 7 1 − √ 2 + √ 5 ⋅ √ 3 − √ 5 1 − √ 3 ) : 1 √ 7 − √ 5 = [ √ 7 ( √ 2 − 1 ) 1 − √ 2 + √ 5 ( √ 3 − 1 ) 1 − √ 3 ] : 1 √ 7 − √ 5 = ( − √ 7 − √ 5 ) ( √ 7 − √ 5 ) = − ( √ 7 + √ 5 ) ( √ 7 − √ 5 ) = − ( 7 − 5 ) = − 2 = V P . c) V T = a √ b + b √ a √ a b : 1 √ a − √ b = √ a ⋅ √ a ⋅ √ b + √ b ⋅ √ b ⋅ √ a √ a b : 1 √ a − √ b = √ a ⋅ √ a b + √ b ⋅ √ a b √ a b : 1 √ a − √ b = √ a b ( √ a + √ b ) √ a b ⋅ ( √ a − √ b ) = ( √ a + √ b ) ⋅ ( √ a − √ b ) = a − b = V P . d) V T = ( 1 + a + √ a √ a + 1 ) ( 1 − a − √ a √ a − 1 ) = ( 1 + √ a ⋅ √ a + √ a √ a + 1 ) ( 1 − √ a ⋅ √ a − √ a √ a − 1 ) = [ 1 + √ a ( √ a + 1 ) √ a + 1 ] [ 1 − √ a ( √ a − 1 ) √ a − 1 ] = ( 1 + √ a ) ( 1 − √ a ) = 1 − ( √ a ) 2 = 1 − a = V P
19 tháng 5 2021

a) VT=\left(\dfrac{2 \sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right) \cdot \dfrac{1}{\sqrt{6}}

=\left(\dfrac{\sqrt{2} \cdot \sqrt{2} \cdot \sqrt{3}-\sqrt{6}}{\sqrt{2^{2} \cdot 2}-2}-\dfrac{\sqrt{6^{2} .6}}{3}\right) \cdot \dfrac{1}{\sqrt{6}}

=\left(\dfrac{\sqrt{2} \cdot \sqrt{6}-\sqrt{6}}{2 \sqrt{2}-2}-\dfrac{6 . \sqrt{6}}{3}\right) \cdot \dfrac{1}{\sqrt{6}}

=\left[\dfrac{\sqrt{6}(\sqrt{2}-1)}{2(\sqrt{2}-1)}-\dfrac{6 \sqrt{6}}{3}\right] \cdot \dfrac{1}{\sqrt{6}}

=\left(\dfrac{\sqrt{6}}{2}-2 \sqrt{6}\right) \cdot \dfrac{1}{\sqrt{6}}

=\left(\dfrac{\sqrt{6}}{2}-\dfrac{4 \sqrt{6}}{2}\right) \cdot \dfrac{1}{\sqrt{6}}

=\left(\dfrac{-3}{2} \sqrt{6}\right) \cdot \dfrac{1}{\sqrt{6}}

=-\dfrac{3}{2}=-1,5=V P.
b) VT=\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right): \dfrac{1}{\sqrt{7}-\sqrt{5}}

=\left(\dfrac{\sqrt{7} \cdot \sqrt{2}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{5} \cdot \sqrt{3}-\sqrt{5}}{1-\sqrt{3}}\right): \dfrac{1}{\sqrt{7}-\sqrt{5}}

=\left[\dfrac{\sqrt{7}(\sqrt{2}-1)}{1-\sqrt{2}}+\dfrac{\sqrt{5}(\sqrt{3}-1)}{1-\sqrt{3}}\right]: \dfrac{1}{\sqrt{7}-\sqrt{5}}

=(-\sqrt{7}-\sqrt{5})(\sqrt{7}-\sqrt{5})

=-(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})

=-(7-5)=-2=VP.

c) V T=\dfrac{a \sqrt{b}+b \sqrt{a}}{\sqrt{a b}}: \dfrac{1}{\sqrt{a}-\sqrt{b}}

=\dfrac{\sqrt{a} \cdot \sqrt{a} \cdot \sqrt{b}+\sqrt{b} \cdot \sqrt{b} \cdot \sqrt{a}}{\sqrt{a b}}: \dfrac{1}{\sqrt{a}-\sqrt{b}}

=\dfrac{\sqrt{a} \cdot \sqrt{a b}+\sqrt{b} \cdot \sqrt{a b}}{\sqrt{a b}}: \dfrac{1}{\sqrt{a}-\sqrt{b}}

=\dfrac{\sqrt{a b}(\sqrt{a}+\sqrt{b})}{\sqrt{a b}} \cdot(\sqrt{a}-\sqrt{b})

=(\sqrt{a}+\sqrt{b}) \cdot(\sqrt{a}-\sqrt{b})

=a-b=V P.

d) VT=\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)

=\left(1+\dfrac{\sqrt{a} \cdot \sqrt{a}+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{\sqrt{a} \cdot \sqrt{a}-\sqrt{a}}{\sqrt{a}-1}\right)

=\left[1+\dfrac{\sqrt{a}(\sqrt{a}+1)}{\sqrt{a}+1}\right]\left[1-\dfrac{\sqrt{a}(\sqrt{a}-1)}{\sqrt{a}-1}\right]

=(1+\sqrt{a})(1-\sqrt{a})

=1-(\sqrt{a})^{2}=1-a=V P

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu 1:

Có: \(8-4\sqrt{3}=8-2\sqrt{12}=6+2-2\sqrt{6.2}=(\sqrt{6}-\sqrt{2})^2\)

\(\Rightarrow \sqrt{8-4\sqrt{3}}=\sqrt{6}-\sqrt{2}\)

Do đó:

\(\frac{\sqrt{8-4\sqrt{3}}}{\sqrt{\sqrt{6}-\sqrt{2}}}.\sqrt{\sqrt{6}+\sqrt{2}}=\frac{\sqrt{6}-\sqrt{2}}{\sqrt{\sqrt{6}-\sqrt{2}}}.\sqrt{\sqrt{6}+\sqrt{2}}=\sqrt{\sqrt{6}-\sqrt{2}}.\sqrt{\sqrt{6}+\sqrt{2}}\)

\(=\sqrt{(\sqrt{6})^2-(\sqrt{2})^2}=\sqrt{6-2}=2\)

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu 2:

\(16-5\sqrt{7}=\frac{32-10\sqrt{7}}{2}=\frac{32-2\sqrt{175}}{2}=\frac{25+7-2\sqrt{25.7}}{2}=\frac{(5-\sqrt{7})^2}{2}\)

\(\Rightarrow \sqrt{16-5\sqrt{7}}=\frac{5-\sqrt{7}}{\sqrt{2}}\)

Do đó:

\(\sqrt{16-5\sqrt{7}}(5\sqrt{2}+\sqrt{14})+\frac{6}{3+\sqrt{10}}=\frac{5-\sqrt{7}}{\sqrt{2}}.\sqrt{2}(5+\sqrt{7})+\frac{6(3-\sqrt{10})}{(3+\sqrt{10})(3-\sqrt{10})}\)

\(=(5-\sqrt{7})(5+\sqrt{7})+\frac{18-6\sqrt{10}}{3^2-10}=25-7+(-18+6\sqrt{10})\)

\(=6\sqrt{10}\)

1: \(=\sqrt{6}+\sqrt{6}+1=2\sqrt{6}+1\)

2: \(=\dfrac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\dfrac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=6+3=9\)

3: \(=\sqrt{3}+1-\sqrt{3}=1\)

 

a: \(=\left(-\sqrt{5}-\sqrt{7}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)\)

\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

=-2

b: \(=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)

\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}\)

c: \(=\dfrac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}-2-\sqrt{10}+3\sqrt{7}+2\)

\(=\sqrt{10}-\sqrt{10}+3\sqrt{7}=3\sqrt{7}\)

28 tháng 7 2021

Bài 1:

a. Ta có \(\sqrt{\dfrac{2}{x^2}}=\dfrac{\sqrt{2}}{\left|x\right|}=\dfrac{\sqrt{2}}{x}\) ,để biểu thức có nghĩa thì \(x>0\)

b. Để biểu thức \(\sqrt{\dfrac{-3}{3x+5}}\) có nghĩa thì \(\dfrac{-3}{3x+5}\ge0\) 

mà \(-3< 0\Rightarrow3x+5< 0\) \(\Rightarrow x< \dfrac{-5}{3}\)

Bài 2:

a. \(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\left(2+\sqrt{2}\right)\left(1-\sqrt{2}\right)}{1-2}=\dfrac{-\sqrt{2}}{-1}=\sqrt{2}\)

b. \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

\(=14-14\sqrt{2}+7+14\sqrt{2}\)

\(=21\)

c. \(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)

\(=14-6\sqrt{28}+18+6\sqrt{28}\)

\(=32\)