Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -3n + 2 \(⋮\)2n + 1
<=> 2(-3n + 2) \(⋮\)2n + 1
<=> -6n + 4 \(⋮\)2n + 1
<=> -3(2n + 1) + 7 \(⋮\)2n + 1
<=> 7 \(⋮\)2n + 1
<=> 2n + 1 \(\in\)Ư(7) = {\(\pm\)1; \(\pm\)7}
Lập bảng:
2n + 1 | -1 | 1 | -7 | 7 |
n | -1 | 0 | -4 | 3 |
Vậy n = {-1; 0; -4; 3}
b) n2 - 5n +7 \(⋮\)n - 5
<=> n(n - 5) + 7 \(⋮\)n - 5
<=> 7 \(⋮\)n - 5
<=> n - 5 \(\in\)Ư(7) = {\(\pm\)1; \(\pm\)7}
Lập bảng:
n - 5 | -1 | 1 | -7 | 7 |
n | 4 | 6 | -2 | 12 |
Vậy n = {4; 6; -2; 12}
c) (3 - x)(xy + 5) = -1
<=> (3 - x) và (xy + 5) \(\in\)Ư(-1)
Ta có: Ư(-1) \(\in\){-1; 1}
Lập bảng:
3 - x | -1 | 1 |
x | -4 | 2 |
xy + 5 | 1 | -1 |
y | 1 | -3 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (-4; 1) và (2; -3)
d) xy - 3x = 5
<=> x(y - 3) = 5
<=> x và y - 3 \(\in\)Ư(5)
Ta có: Ư(5) \(\in\){\(\pm\)1; \(\pm\)5}
Lập bảng:
x | -1 | 1 | -5 | 5 |
y-3 | -5 | 5 | -1 | 1 |
y | -2 | 8 | 2 | 4 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (-1; -2); (1; 8); (-5; 2) và (5; 4)
e) xy - 2y + x = -5
<=> y(x - 2) + (x - 2) = -7
<=> (x - 2)(y + 1) = -7
<=> (x - 2) và (y + 1) \(\in\)Ư(-7)
Ta có: Ư(-7) \(\in\){\(\pm\)1; \(\pm\)7}
Lập bảng:
x - 2 | -1 | 1 | -7 | 7 |
x | 1 | 3 | -5 | 9 |
y + 1 | 7 | -7 | 1 | -1 |
y | 6 | -8 | 0 | -2 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (1; 6): (3; -8); (-5; 0) và (9; -2)
Bài 1: Ta có: xy-5x+y=9
\(\Leftrightarrow\) xy-5x+y-5=9-5
\(\Leftrightarrow\) x(y-5)+y-5=4
\(\Leftrightarrow\) x(y-5) +(y-5)=4
\(\Leftrightarrow\) (x+1)(y-5)=4=2.2=1.4=-1.-4=-2.-2
*Với (x+1) và (y-5) là các số nguyên dương, ta có:
\(\left[{}\begin{matrix}x+1=2;y-5=2\\x+1=1;y-5=4\\x+1=4;y-5=1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=2-1=1;y=2+5=7\\x=1-1=0;y=4+5=9\\x=4-1=3;y=1+5=6\end{matrix}\right.\)
*Với (x+1) và (y-5) là các số nguyên âm, ta có:
\(\left[{}\begin{matrix}x+1=-2;y-5=-2\\x+1=-1;y-5=-4\\x+1=-4;y-5=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2-1=-3;y=-2+5=3\\x=-1-1=-2;y=-4+5=1\\x=-4-1=-5;y=-1+5=4\end{matrix}\right.\)
Vậy: (x;y)=(1;7) (0;9) (3;6) (-3;3) (-2;1) (-5;4)
Bài 2:
a: =>3n-3+8 chia hết cho n-1
=>\(n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
=>\(n\in\left\{2;0;3;-1;5;-3;9;-7\right\}\)
b: =>n^2+n-4n-4+4 chia hết cho n+1
=>\(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)
c: \(A=n^2+n+1=n\left(n+1\right)+1\)
Vì n;n+1 là hai số liên tiếp
nên n(n+1) chia hết cho 2
=>A ko chia hết cho 2
=>A ko chia hết cho 100