K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Ta có: \(\left(x+5\right)\left(x+2\right)-3\left(4x-3\right)=\left(5-x\right)^2\)

\(\Leftrightarrow x^2+2x+5x+10-12x+9=25-10x+x^2\)

\(\Leftrightarrow x^2-5x+19-25+10x-x^2=0\)

\(\Leftrightarrow5x-6=0\)

\(\Leftrightarrow5x=6\)

\(\Leftrightarrow x=\frac{6}{5}\)

Vậy: \(x=\frac{6}{5}\)

2) Ta có: \(\left(x+2\right)^3-\left(x-2\right)^3=12x\left(x-1\right)-8\)

\(\Leftrightarrow x^3+6x^2+12x+8-\left(x^3-6x^2+12x-8\right)=12x^2-12x-8\)

\(\Leftrightarrow x^3+6x^2+12x+8-x^3+6x^2-12x+8-12x^2+12x+8=0\)

\(\Leftrightarrow12x+24=0\)

\(\Leftrightarrow12x=-24\)

\(\Leftrightarrow x=-2\)

Vậy: x=-2

3) Ta có: \(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)

\(\Leftrightarrow36x^2-12x-36x^2+27x-30=0\)

\(\Leftrightarrow15x-30=0\)

\(\Leftrightarrow15x=30\)

\(\Leftrightarrow x=2\)

Vậy: x=2

4) Ta có: \(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)

\(\Leftrightarrow48x^2-12x-20x+5+3x-48x^2-7+112x-81=0\)

\(\Leftrightarrow83x-83=0\)

\(\Leftrightarrow83x=83\)

\(\Leftrightarrow x=1\)

Vậy: x=1

20 tháng 9 2020

\(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)

=> \(2x^2+3\left(x^2-1\right)=5x^2+5x\)

=> \(2x^2+3x^2-3-5x^2-5x=0\)

=> \(-3-5x=0\)

=> \(5x=-3\Rightarrow x=-\frac{3}{5}\)

\(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+\frac{9}{2}\right)=\frac{7}{2}\)

=> \(x\left[2x\left(x+5\right)-1\left(x+5\right)\right]-2x^2\left(x+\frac{9}{2}\right)-1\left(x+\frac{9}{2}\right)=\frac{7}{2}\)

=> \(x\left(2x^2+10x-x-5\right)-2x^3-9x^2-x-\frac{9}{2}=\frac{7}{2}\)

=> \(2x^3+10x^2-x^2-5x-2x^3-9x^2-x-\frac{9}{2}=\frac{7}{2}\)

=> \(\left(2x^3-2x^3\right)+\left(10x^2-x^2-9x^2\right)+\left(-5x-x\right)-\frac{9}{2}=\frac{7}{2}\)

=> \(-6x-\frac{9}{2}=\frac{7}{2}\)

=> \(-6x=8\Rightarrow x=-\frac{8}{6}=-\frac{4}{3}\)

\(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)

=> 12x(4x - 1) - 5(4x - 1) + 3x(1 - 16x) - 7(1 - 16x) = 81

=> 48x2 - 12x - 20x + 5 + 3x - 48x2 - 7 + 112x = 81

=> -12x - 20x + 3x + 112x + 5 - 7 = 81

=> 83x + 5 - 7 = 81

=> 83x = 81 + 7 - 5

=> 83x = 83

=> x = 1

20 tháng 9 2020

1) \(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)

\(\Leftrightarrow2x^2+3x^2-3-5x^2-5x=0\)

\(\Leftrightarrow5x=-3\)

\(\Rightarrow x=-\frac{3}{5}\)

2) \(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+\frac{9}{2}\right)=\frac{7}{2}\)

\(\Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-\frac{9}{2}=\frac{7}{2}\)

\(\Leftrightarrow-6x=8\)

\(\Rightarrow x=-\frac{4}{3}\)

3) \(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)

\(\Leftrightarrow48x^2-32x+5-48x^2+115x-7=81\)

\(\Leftrightarrow83x=83\)

\(\Rightarrow x=1\)

a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0

=>-5x-4=0

=>x=-4/5

b: =>6x^2-9x+2x-3-6x^2-12x=16

=>-19x=19

=>x=-1

c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81

=>83x=83

=>x=1

23 tháng 6 2023

Cảm ơn nhìu ạ :3

17 tháng 6 2018

a/ \(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)

<=> \(48x^2-12x-20x+5+3x-48x^2-7+112x=81\)

<=> \(83x-2=81\)

<=> \(83x=83\)

<=> \(x=1\)

b/ \(\left(2x-3\right)\left(2x+3\right)-\left(4x+1\right)x=1\)

<=> \(4x^2-9-4x^2-x=1\)

<=> \(-\left(9+x\right)=1\)

<=> \(9+x=-1\)

<=> \(x=-10\)

c/ \(3x^2-\left(x+2\right)\left(3x-1\right)=-7\)

<=> \(3x^2-\left(3x^2-x+6x-2\right)=-7\)

<=> \(3x^2-3x^2+x-6x+2=-7\)

<=> \(-5x+2=-7\)

<=> \(-5x=-9\)

<=> \(x=\frac{9}{5}\)

8 tháng 12 2021

a, <=> x2 -2x +1 + 5x -x2 =8

<=> 3x +1 =8 

<=> 3x = 7

<=> x= 7/3

b, thiếu đề

c, <=> 2x3 -1 + 2x(4 -x2) = 7

<=> 2x3 + 8x -23 = 8

<=> 8x =8

<=> x=1

NV
6 tháng 1 2022

1.

\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)

\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)

\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max

2.

\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)

\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)

\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)

\(E_{min}=-1\) khi \(x=0\)

\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)

\(G_{min}=-2\) khi \(x=2\)

b: \(\Leftrightarrow\dfrac{-3x^2+36x+12}{3\left(x+4\right)\left(x-1\right)}=\dfrac{36\left(x-1\right)}{3\left(x+4\right)\left(x-1\right)}+\dfrac{12\left(x+4\right)}{3\left(x-1\right)\left(x+4\right)}\)

\(\Leftrightarrow-3x^2+36x+12=36x-36+12x+48\)

\(\Leftrightarrow-3x^2+36x+12-48x-12=0\)

\(\Leftrightarrow3x\left(x+4\right)=0\)

=>x=0(nhận) hoặc x=-4(loại)