K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2016

b)\(\frac{3}{4}x-\frac{1}{8}=\frac{3}{7}\)\(\Leftrightarrow\frac{3}{4}x=\frac{3}{7}+\frac{1}{8}=\frac{31}{56}\)\(\Leftrightarrow x=\frac{31}{56}:\frac{3}{4}=\frac{31}{42}\)

c)\(-\frac{21}{13}x+\frac{1}{3}=\frac{2}{3}\Leftrightarrow-\frac{21}{13}x=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\Leftrightarrow x=\frac{1}{3}:-\frac{21}{13}=-\frac{13}{63}\)

8 tháng 7 2016

a.2/3x+5/7=3/10

2/3x=3/10-5/7

   2/3x=-29/70

        x=-87/140

  1. a, \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\Rightarrow\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}=\frac{-29}{70}\Rightarrow x=\frac{-29}{70}:\frac{2}{3}=\frac{-87}{140}\)
  2. b, \(\frac{3}{4}x-\frac{1}{8}=\frac{3}{7}\Rightarrow\frac{3}{4}x=\frac{3}{7}+\frac{1}{8}=\frac{31}{56}\Rightarrow x=\frac{31}{56}:\frac{3}{4}=\frac{31}{42}\) 

c, \(\frac{-21}{13}x+\frac{1}{3}=\frac{2}{3}\Rightarrow\frac{-21}{13}x=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\Rightarrow x=\frac{1}{3}:\frac{-21}{3}=\frac{-1}{21}\)​ 

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

28 tháng 3 2020

\(a,x.\frac{-3}{7}=\frac{4}{21}\)

\(x=\frac{4}{21}:\frac{-3}{7}\)

\(x=\frac{-4}{9}\)

\(b,\frac{-4}{7}:x=\frac{2}{5}\)

\(x=\frac{-4}{7}:\frac{2}{5}\)

\(x=\frac{-10}{7}\)

\(c,x+\frac{1}{12}=\frac{-3}{8}\)

\(x=\frac{-3}{8}-\frac{1}{12}\)

\(x=\frac{-11}{24}\)

\(d,\frac{2}{15}-x=\frac{-3}{10}\)

\(x=\frac{2}{15}+\frac{3}{10}\)

\(x=\frac{13}{30}\)

28 tháng 3 2020

\(e,-x+\frac{4}{5}=\frac{1}{2}\)

\(-x=\frac{-3}{10}\)

\(x=\frac{3}{10}\)

\(f,\frac{3}{4}.\left(x+1\right)-\frac{1}{2}=\frac{3}{7}\)

\(\frac{3}{4}.\left(x+1\right)=\frac{13}{14}\)

\(x+1=\frac{26}{21}\)

\(x=\frac{5}{21}\)

\(\frac{-3}{2}-2x+\frac{3}{4}=-2\)

\(\frac{-3}{2}-2x=\frac{-11}{4}\)

\(2x=\frac{-3}{2}+\frac{11}{4}\)

\(2x=\frac{-17}{4}\)

\(x=\frac{-17}{8}\)

\(h,-x+\frac{4}{5}=\frac{1}{2}\)

\(-x=\frac{-3}{10}\)

\(x=\frac{3}{10}\)

chúc bạn học tốt !!!

16 tháng 5 2022

a.-1,75-(-\(\dfrac{1}{9}\)-2\(\dfrac{1}{8}\))
-1,75-\(\dfrac{1}{9}+\dfrac{17}{8}\)
\(-\dfrac{7}{4}-\dfrac{1}{9}+\dfrac{17}{8}\)
\(\dfrac{-126}{72}-\dfrac{8}{72}+\dfrac{153}{72}\)
=\(\dfrac{19}{72}\)

16 tháng 5 2022

b.\(\dfrac{-1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\left(\dfrac{21}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\dfrac{21}{8}+\dfrac{1}{3}\)
\(\dfrac{-2}{24}-\dfrac{63}{24}+\dfrac{64}{24}\)
=\(\dfrac{-1}{24}\)

26 tháng 9 2016

a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\) 

\(\Rightarrow\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=-4x+1\end{cases}}\Rightarrow\orbr{\begin{cases}4x-\frac{3}{2}x-1=\frac{1}{2}\\-4x-\frac{3}{2}x+1=\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{5}{2}x=\frac{3}{2}\\-\frac{11}{2}x=-\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\) 

26 tháng 9 2016

phần b ở đề bài mình ghi sai, là bằng 0 chứ ko phải bằng 10

5 tháng 10 2020

Bài 1 :

a) \(\frac{12}{21}-\frac{3}{7}+\left(-\frac{2}{3}\right)=\frac{4}{7}-\frac{3}{7}+\left(-\frac{2}{3}\right)=\frac{1}{7}-\frac{2}{3}=-\frac{11}{21}\)

b) \(\left(-\frac{25}{13}\right)+\left(-\frac{9}{17}\right)+\frac{12}{13}+\left(-\frac{25}{17}\right)\)

\(=\left[\left(-\frac{25}{13}\right)+\frac{12}{13}\right]+\left[\left(-\frac{9}{17}\right)+\left(-\frac{25}{17}\right)\right]\)

\(=-1+\left(-2\right)=-1-2=-3\)

c) \(\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}-\frac{5}{9}\cdot\frac{3}{13}=\frac{5}{9}\left(\frac{7}{13}+\frac{9}{13}-\frac{3}{13}\right)=\frac{5}{9}\cdot1=\frac{5}{9}\)

Bài 2 :

a)  \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\)

=> \(\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}=-\frac{29}{70}\)

=> \(x=\left(-\frac{29}{70}\right):\frac{2}{3}=\left(-\frac{29}{70}\right)\cdot\frac{3}{2}=-\frac{87}{140}\)

b) \(x:\frac{5}{2}-\frac{1}{2}=-\frac{2}{3}\)

=> \(x:\frac{5}{2}=-\frac{2}{3}+\frac{1}{2}=-\frac{1}{6}\)

=> \(x=\left(-\frac{1}{16}\right)\cdot\frac{5}{2}=-\frac{5}{32}\)

c) Bạn chỉ cần xét hai trường hợp âm và dương thôi :>

22 tháng 6 2016

\(a,\left(\frac{3}{8}+-\frac{3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)

   =  \(\left(-\frac{3}{8}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)

    = \(\frac{5}{24}:\frac{5}{6}+\frac{1}{2}\)

     = \(\frac{1}{4}+\frac{1}{2}\)

      =  \(\frac{3}{4}\)

b)\(-\frac{7}{3}.\frac{5}{9}+\frac{4}{9}.\left(-\frac{3}{7}\right)+\frac{17}{7}\)

    =\(-\frac{35}{27}+\left(-\frac{4}{21}\right)+\frac{17}{7}\)

   = \(-\frac{35}{27}+\frac{47}{21}\)

   =        \(\frac{178}{189}\)

c) \(\frac{117}{13}-\left(\frac{2}{5}+\frac{57}{13}\right)\)

  = \(\frac{117}{13}-\frac{311}{65}\)

 =       \(\frac{274}{65}\)

d) \(\frac{2}{3}-0,25:\frac{3}{4}+\frac{5}{8}.4\)

\(\frac{2}{3}-\frac{1}{4}:\frac{3}{4}+\frac{5}{8}.4\)

\(\frac{2}{3}-\frac{1}{3}+\frac{5}{2}\)

=     \(\frac{1}{3}+\frac{5}{2}\)

=         \(\frac{17}{6}\)

18 tháng 9 2023

a,     \(\dfrac{3}{7}\)\(x\)\(\dfrac{2}{3}\)\(x\)    = \(\dfrac{10}{21}\)

    (\(\dfrac{3}{7}\) - \(\dfrac{2}{3}\)\(\times\) \(x\)  =  \(\dfrac{10}{21}\)

     - \(\dfrac{5}{21}\) \(\times\) \(x\)      = \(\dfrac{10}{21}\)

                 \(x\)      = \(\dfrac{10}{21}\) : (-\(\dfrac{5}{21}\))

                 \(x\)      = -2 

 

       

b, \(\dfrac{7}{35}\) : (\(x-\dfrac{1}{3}\)) = - \(\dfrac{2}{25}\)

            \(x\) - \(\dfrac{1}{3}\)    =  \(\dfrac{7}{35}\) : (- \(\dfrac{2}{25}\))

             \(x\) - \(\dfrac{1}{3}\) = - \(\dfrac{5}{2}\)

             \(x\)       =  - \(\dfrac{5}{2}\) + \(\dfrac{1}{3}\)

              \(x\)      = - \(\dfrac{13}{6}\)

c, 3.(\(x\) - \(\dfrac{1}{2}\)) - 5.(\(x\) + \(\dfrac{3}{5}\)) = - \(x\)\(\dfrac{1}{5}\)

     3\(x\) - \(\dfrac{3}{2}\) - 5\(x\) - 3 = - \(x\) + \(\dfrac{1}{5}\)

      - \(x\) + 5\(x\) - 3\(x\) = - \(\dfrac{3}{2}\) - 3 - \(\dfrac{1}{5}\)

              \(x\)           = - \(\dfrac{47}{10}\)

18 tháng 9 2023

\(a,\dfrac{3}{7}x-\dfrac{2}{3}x=\dfrac{10}{21}\\ \Rightarrow x\left(\dfrac{3}{7}-\dfrac{2}{3}\right)=\dfrac{10}{21}\\ \Rightarrow x.-\dfrac{5}{21}=\dfrac{10}{21}\\ \Rightarrow x=-2\\ b,\dfrac{7}{35}:\left(x-\dfrac{1}{3}\right)=-\dfrac{2}{25}\\ \Rightarrow\dfrac{1}{5}:\left(x-\dfrac{1}{3}\right)=-\dfrac{2}{25}\\ \Rightarrow x-\dfrac{1}{3}=-\dfrac{5}{2}\\ \Rightarrow x=-\dfrac{13}{6}\\ c,3.\left(x-\dfrac{1}{2}\right)-5.\left(x+\dfrac{3}{5}\right)=-x+\dfrac{1}{5}\\ \Rightarrow3x-\dfrac{3}{2}-5x+5=-x+\dfrac{1}{5}\)

\(\Rightarrow x\left(3-5\right)-\dfrac{3}{2}+5=-x+\dfrac{1}{5}\\ \Rightarrow-2x-\dfrac{13}{2}=-x+\dfrac{1}{5}\\ \Rightarrow-x-\dfrac{13}{5}=\dfrac{1}{5}\\ \Rightarrow x=\dfrac{1}{5}-\dfrac{13}{5}\\ \Rightarrow x=-\dfrac{12}{5}.\)

14 tháng 4 2023

Bài 1: 

a) \(-5\left(x^2-3x+1\right)+x\left(1+5x\right)=x-2\)

\(\Rightarrow-5x^2+15x-5+x+5x^2=x-2\)

\(\Rightarrow16x-5=x-2\)

\(\Rightarrow16x-x=5-2\)

\(\Rightarrow15x=3\)

\(\Rightarrow x=\dfrac{15}{3}=5\)

b) \(12x^2-4x\left(3x+5\right)=10x-17\)

\(\Rightarrow12x^2-12x^2-20x=10x-17\)

\(\Rightarrow-20x=10x-17\)

\(\Rightarrow-20x-10x=-17\)

\(\Rightarrow-30x=-17\)

\(\Rightarrow x=\dfrac{-30}{-17}=\dfrac{30}{17}\)

c) \(-4x\left(x-5\right)+7x\left(x-4\right)-3x^2=12\)

\(\Rightarrow-4x^2+20x+7x^2-28x-3x^2=12\)

\(\Rightarrow-8x=12\)

\(\Rightarrow x=\dfrac{12}{-8}=-\dfrac{4}{3}\)

Bài 2: 

a) \(\left(x+5\right)\left(x-7\right)-7x\left(x-3\right)\)

\(=x^2-7x+5x-35-7x^2+21x\)

\(=-6x^2+19x-35\)

b) \(x\left(x^2-x-2\right)-\left(x-5\right)\left(x+1\right)\)

\(=x^3-x^2-2x-x^2+x-5x-5\)

\(=x^3-2x^2-6x-5\)

c) \(\left(x-5\right)\left(x-7\right)-\left(x+4\right)\left(x-3\right)\)

\(=x^2-7x-5x+35-x^2-3x+4x-12\)

\(=11x+23\)

d) \(\left(x-1\right)\left(x-2\right)-\left(x+5\right)\left(x+2\right)\)

\(=x^2-2x-x+2-x^2+2x+5x+10\)

\(=4x+12\)