Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 22x + 1 = 32
=> 22x + 1 = 25
=> 2x + 1 = 5
=> 2x = 5 - 1
=> 2x = 4
=> x = 2
(2) 3.x3 - 100 = 275
=> 3x3 = 275 + 100
=> 3x3 = 375
=> x3 = 375 : 3
=> x3 = 125
=> x3 = 53
=> x = 5
(4) (x - 1)3 - 25 = 72
=> (x - 1)3 = 49 + 32
=> (x - 1)3 = 81
(xem lại đề)
5) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{-4}{-2}=2\)
=> \(\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{5}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.3=6\\y=2.5=10\end{cases}}\)
Vậy ...
6) Ta có: \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\) => \(\frac{y}{15}=\frac{z}{12}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{10+15+12}=\frac{-49}{37}\)
=> \(\hept{\begin{cases}\frac{x}{10}=-\frac{49}{37}\\\frac{y}{15}=-\frac{49}{37}\\\frac{z}{12}=-\frac{49}{37}\end{cases}}\) => \(\hept{\begin{cases}x=-\frac{49}{37}\cdot10=\frac{-490}{37}\\y=-\frac{49}{37}\cdot15=-\frac{735}{37}\\z=-\frac{49}{37}\cdot12=-\frac{588}{37}\end{cases}}\)
Vậy ...
mk lm bài mà mk cho là ''khó'' nhất thôi nha
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)và \(x+y+z=-49\)
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
\(\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{15}=\frac{z}{12}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
ADTC dãy tỉ số bằng nhau ta có
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{10+15+12}=-\frac{49}{37}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=-\frac{49}{37}\\\frac{y}{15}=-\frac{49}{37}\\\frac{z}{12}=-\frac{49}{37}\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{49}{37}.10=-\frac{490}{37}\\y=-\frac{49}{37}.15=-\frac{735}{37}\\z=-\frac{49}{37}.12=-\frac{588}{37}\end{cases}}}\)
Mình làm một câu ví dụ thui nha
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{5x}{50}=2\Rightarrow x=20\)
\(\frac{y}{6}=2\Rightarrow y=12\)
\(\frac{2z}{42}=2\Rightarrow x=42\)
mấy câu khác thì tương tự
tíc mình nha bạn
Bài 2:
\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)
\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)
e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)
Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).
b) 3x = 2y
=> x/2 = y/3 (1)
7y = 5z
=> y/5 = z/7 (2)
Từ (1) và (2), có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x/10 = 2 => x = 2 x 10 =20
y/15 = 2 => y = 2 x 15 = 30
z/21 = 2 => z = 2 x 21 = 42
Bài 2:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và\(x+y+z=49\)
Áp dụng tính chất của dãy tỷ số bằng nhau
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{49}{10}\)
\(\Rightarrow\hept{\begin{cases}x=2.\frac{49}{10}=\frac{49}{5}\\y=3.\frac{49}{10}=\frac{147}{10}\\x=5.\frac{49}{10}=\frac{49}{2}\end{cases}}\)
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7};2x+3y-z=124\)
Ta có:
\(\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
\(\Rightarrow\hept{\begin{cases}x=15.2=30\\y=20.2=40\\z=28.2=56\end{cases}}\)
(1)\(2^2.x+1=32\)
4.x = 32-1
4.x=31
x=31:4
x= 7,75
(4)\(\left(x-1\right)^3-2^5=7^2\)
\(\left(x-1\right)-32=49\)
\(\left(x-1\right)=49-32\)
\(x-1=17\)
x=17+1
x=18