K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 3 2021

Bài 1:

Đặt $n=9k+5$ với $k$ là số tự nhiên:

$n$ chia 7 dư 4, tức là $n-4\vdots 7$

$\Leftrightarrow 9k+1\vdots 7$

$\Leftrightarrow 2k+1\vdots 7$

$\Leftrightarrow 2k-6\vdots 7$

$\Leftrightarrow k-3\vdots 7$ nên $k$ có dạng $7m+3$ với $m$ tự nhiên.

Khi đó: $n=9(7m+3)+5=63m+32

$n$ chia $5$ dư $3$, nghĩa là $n-3\vdots 5$

$\Leftrightarrow 63m-29\vdots 5$

$\Leftrightarrow 3m+1\vdots 5$

$\Leftrightarrow 3m-9\vdots 5$

$\Leftrightarrow m-3\vdots 5$

$\Rightarrow m$ có dạng $5t+3$ với $t$ tự nhiên.

Khi đó: $n=63m+32=63(5t+3)+32=315t+221$ với $t$ tự nhiên.

 

AH
Akai Haruma
Giáo viên
11 tháng 3 2021

Bài 2:

$S=1+3^2+3^3+...+3^{62}$

$3S=3+3^3+3^4+....+3^{63}$

Trừ theo vế:

$3S-S=3^{63}+3-(1+3^2)=3^{63}-7$

$2S=3^{63}-7$

Ta thấy: $2S=3^{63}-7\equiv (-1)^{63}-7\equiv -8\equiv 0\pmod 4$

$2S=9^{31}.3-7\equiv 3-7\equiv -4\equiv 4\pmod 8$

Nghĩa là $S$ chia hết cho $2$ nhưng không chia hết cho $4$ nên $S$ không là scp.