K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2017

Gọi d là ước chung nguyên tố của 2n + 3 và 4n + 1

\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\4n+1⋮d\end{matrix}\right.\)

+) Vì : \(2n+3⋮d;2\in N\)

\(\Rightarrow2\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\)

Mà : \(4n+1⋮d\)

\(\Rightarrow\left(4n+6\right)-\left(4n+1\right)⋮d\)

\(\Rightarrow4n+6-4n-1⋮d\Rightarrow5⋮d\)

\(\Rightarrow\) d là ước của 5 ; d nguyên tố

\(\Rightarrow d=5\)

Với \(d=5\Rightarrow4n+1⋮5\)

\(\Rightarrow5n-n+1⋮5\Rightarrow5n-\left(n-1\right)⋮5\)

Vì : \(n\in N\Rightarrow5n⋮5\)

\(\Rightarrow n-1⋮5\Rightarrow n-1=5k\Rightarrow n=5k+1\)

Thử lại : n = 5k + 1 ( \(k\in N\))

\(2n+3=2\left(5k+1\right)+3=10k+5=5\left(2k+1\right)⋮5\)

\(4n+1=4\left(5k+1\right)+1=20k+5=5\left(4k+1\right)⋮5\)

\(\Rightarrow\) Với n = 5k + 1 thì phân số trên rút gọn được

\(\Rightarrow n\ne5k+1\) thì phân số trên tối giản

Vậy \(n\ne5k+1\)

Hai câu cuối tương tự

c: nếu n=3 thì đây ko phải phân số tối giản nha bạn

b: Nếu n=3 thì đây cũng ko phải phân số tối giản nha bạn

a: Nếu n=1 thì đây cũng ko phải phân số tối giản nha bạn

AH
Akai Haruma
Giáo viên
17 tháng 4 2022

Lời giải:

a/

Gọi ƯCLN(n+1, 2n+3)=d$ 

Khi đó:

$n+1\vdots d\Rightarrow 2n+2\vdots d(1)$

$2n+3\vdots d(2)$

Từ $(1); (2)\Rightarrow (2n+3)-(2n+1)\vdots d$ hay $1\vdots d$

$\Rightarrow d=1$
Vậy $n+1, 2n+3$ nguyên tố cùng nhau nên phân số đã cho tối giản. 

Câu b,c làm tương tự.

a) 3;5;11

e) 9;30

a: Gọi d=ƯCLN(2n+7;2n+3)

=>2n+7 chia hết cho d và 2n+3 chia hết cho d

=>2n+7-2n-3 chia hết cho d

=>4 chia hết cho d

mà 2n+7 lẻ

nên d=1

=>PSTG

b: Gọi d=ƯCLN(6n+5;8n+7)

=>4(6n+5)-3(8n+7) chia hết cho d

=>-1 chia hết cho d

=>d=1

=>PSTG

 

28 tháng 2

1.    a. Tính :

1.    a. Tính :

12 tháng 4 2023

Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )

n +1 = 2n + 2 (1) ; 2n+3*)   (2)

Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1

vậy ta có đpcm 

gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )

3n +2 = 15 n + 10 (1)  ; 5n + 3 =15n + 9 (2)

lấy (!) - (2)  ta được  15n + 10 - 15n - 9 = 1:d => d = 1

Vậy ta có đpcm 

a) \(\frac{2n+3}{4n+1}\) là phân số tối giản

\(\frac{2n+3}{4n+1}\)\(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1

=>n=1

mình ko chắc là đúng nha