Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn đăg tách ra cho m.n cùng giúp nhé
Bài 2 :
a, \(A=\left|2x-4\right|+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=\left|x+2\right|-3\ge-3\)
Dấu ''='' xảy ra khi x = -2
Vậy GTNN B là -3 khi x = -2
1. Ta có \(|3x-1|=\frac{1}{2}\)
\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)
Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha
Sai thì thôi nha bn mik cx chưa lm dạng này bh
Câu 1:
\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)
\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)
\(=x^2+9x+1\)
Ta có: \(\left|3x-1\right|=\frac{1}{2}\)
TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)
\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)
TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)
\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)
a = |2x-1/3|-7/4
Do |2x-1/3| \(\ge\) 0
|2x-1/3|-7/4 \(\ge\) 7/4
Dấu = xảy ra <=> 2x-1/3=0. =>. x= 1/6
b 1/3|x-2|+2|3-1/2 y|+4
Do |x-2| \(\ge\) 0
|3-1/2y| \(\ge\) 0
=> 1/3|x-2|+2|3-1/2 y|+4 \(\ge\) 4
Dấu = xảy ra <=>\(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)
a: Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{6}\)
b: Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)
\(2\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)
Do đó: \(\dfrac{1}{3}\left|x-2\right|+2\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)
\(\Leftrightarrow\left|x-2\right|\cdot\dfrac{1}{3}+\left|3-\dfrac{1}{2}y\right|\cdot2+4\ge4\forall x,y\)
Dấu '=' xảy ra khi x=2 và y=6
`a)` Cho `3x+6=0`
`=>3x=-6`
=>x=-2`
Vậy nghiệm của đa thức là `x=-2`
`b)` Cho `2x^2-3x=0`
`=>x(2x-3)=0`
`@TH1:x=0`
`@TH2:2x-3=0=>2x=3=>x=3/2`
Vậy nghiệm của đa thức là `x=0` hoặc `x=3/2`
____________________________________________
Câu `2:`
Vì `(x+1)^2 >= 0 AA x`
`=>2(x+1)^2 >= 0 AA x`
`=>2(x+1)^2-5 >= -5 AA x`
Hay `A >= -5 AA x`
Dấu "`=`" xảy ra khi `(x+1)^2=0=>x+1=0=>x=-1`
Vậy `GTN N` của `A` là `-5` khi `x=-1`
Câu 1:
a, Cho 2x+6=0
2x = 0-6=-6
x = -6 :2=-3
Vậy đa thức trên có nghiệm là x=-3
b, Cho đa thức 2x2-3x=0
2xx-3x=0
x(2x-3x)=0
1,x=0
2,2x-3x=0
x(2-3)=0
-x =0
=>x=0
Vậy đa thức tên có nghiệm là x=0
Câu 2:
Để đa thức A có giá trị nhỏ nhất thì 2(x+1)2-5 phải bé nhất;
mà 2(x-1)2≥0
Dấu bằng chỉ xuất hiện khi và chỉ khi :
2(x-1)2=0
(x-1)2=0:2=0=02
=>x-1=0
x =0+1=1
=> A = 2(1-1)2-5
A =2.0-5
A 0-5 =-5
Vậy A có giá trị bé nhất là -5 với x= 1
Bài 2 :
a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)
Dấu ''='' xảy ra khi x = 2
b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)
Dấu ''='' xảy ra khi x = -1
Bài 1 :
a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)
c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
c1 a) 2019
b) 4