K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2017

Bài 1 :

a/ Ta có :

\(C=\dfrac{19}{3}-\left|x+5\right|\)

\(\left|x+5\right|\ge0\)

\(\Leftrightarrow C\le\dfrac{19}{3}\)

Để \(C\) đạt GTLN thì \(\left|x+5\right|\) đạt GTNN

Dấu "=" xảy ra khi :

\(\left|x+5\right|=0\)

\(\Leftrightarrow x=-5\)

Vậy GTLN của C = 19/3 khi x = -5

b/ Ta có :

\(D=\dfrac{-21}{7}-\left|4-x\right|\)

\(\left|4-x\right|\ge0\)

\(\Leftrightarrow D\le\dfrac{-21}{7}\)

Để D đạt GTLN thì \(\left|4-x\right|\) đạt GTNN

Dấu "=" xảy ra khi :

\(\left|4-x\right|=0\)

\(\Leftrightarrow x=4\)

Vậy D đạt GTLN = -21/7 khi x = 4

28 tháng 9 2017

Bài 2 :

a/ \(\left|x-\dfrac{4}{5}\right|=\dfrac{3}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{4}{5}=\dfrac{3}{4}\\x-\dfrac{4}{5}=-\dfrac{3}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{31}{20}\\x=\dfrac{1}{20}\end{matrix}\right.\)

Vậy ...........

b/ \(6-\left|\dfrac{1}{2}-x\right|=\dfrac{2}{5}\)

\(\Leftrightarrow\left|\dfrac{1}{2}-x\right|=\dfrac{28}{15}\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}-x=\dfrac{28}{15}\\\dfrac{1}{2}-x=-\dfrac{28}{15}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{41}{30}\\x=\dfrac{71}{30}\end{matrix}\right.\)

Vậy ...

21 tháng 7 2021

b)  (2x-6)(x+4)=0

c)  (x-3)(x+4)<0

d)  (x+2)(X-5)>0

21 tháng 7 2021

bạn đăg tách ra cho m.n cùng giúp nhé

Bài 2 : 

a, \(A=\left|2x-4\right|+2\ge2\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN A là 2 khi x = 2 

b, \(B=\left|x+2\right|-3\ge-3\)

Dấu ''='' xảy ra khi x = -2 

Vậy GTNN B là -3 khi x = -2 

2 tháng 9 2017

nhìu dữ

a)3/2

b)-1/3

c)-5/6

d)0

e)-1/2

Bài 2

a=3

b=1/2

c=-1/3

d=0

e=9

f=-2/3

2 tháng 9 2017

mk ko làm rõ đâu  nhe

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$A=(x-4)^2+1$

Ta thấy $(x-4)^2\geq 0$ với mọi $x$

$\Rightarroe A=(x-4)^2+1\geq 0+1=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

-------------------

$B=|3x-2|-5$

Vì $|3x-2|\geq 0$ với mọi $x$ 

$\Rightarrow B=|3x-2|-5\geq 0-5=-5$

Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

$C=5-(2x-1)^4$

Vì $(2x-1)^4\geq 0$ với mọi $x$ 

$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$

Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$

----------------

$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$

$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$

Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$

$\Leftrightarrow x=3; y=1$

11 tháng 9 2017

Bài 3 : 

Vì \(\left(x-2\right)^2\ge0\forall x\)

Nên :  \(A=\left(x-2\right)^2-4\ge-4\forall x\)

Vậy \(A_{min}=-4\) khi x = 2

11 tháng 9 2017

B1: lấy máy tính mà tính thôi bạn (nhớ lm theo từng bước)

B2: 

a, \(\left|x-\frac{2}{3}\right|-\frac{1}{2}=\frac{5}{6}\)

\(\left|x-\frac{2}{3}\right|=\frac{4}{3}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{2}{3}=\frac{4}{3}\\x-\frac{2}{3}=\frac{-4}{3}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}}\)

b, \(\frac{\left(-2\right)^x}{512}=-32\Rightarrow\left(-2\right)^x=-16384\Rightarrow x\in\varnothing\)

B3:

Vì \(\left(x-2\right)^2\ge0\Rightarrow A=\left(x-2\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x = 2

Vậy GTNN của A = -4 khi x = 2

2 tháng 10 2016

a) |x+3/4| >/ 0 

|x+3/4| + 1/2 >/ 1/2 

MinA= 1/2  <=>  x+3/4 =0 hay x= -3/4

b) 2|2x-4/3|  >/  0 

2|2x-4/3| -1 >/ -1

Min= -1 <=>  2|2x-4/3| = 0 hay x=2/3

Bài tiếp théo:

a) -2|x+4| \< 0 

-2|x+4| +1 \<  1

MaxA=1  <=> -2|x+4| = 0 hay = -4

b) -3|x-5|   \<  0

-3|x-5| + 11/4  \<  11/4 

MaxB=11/4  <=>  -3|x-5| = 0 hay x=-5  

3 tháng 3 2018

a) Ta có: \(\text{|}5x-2\text{|}\ge0\)

=> \(2\text{|}5x-2\text{|}\ge2.0=0\)

=> \(2\text{|}5x-2\text{|}+4\ge0+4=4\)

Vậy Min(2|5x-2|+4)=4 khi x=\(\frac{2}{5}\)

b) Ta có: \(x^2\ge0\) và \(|y-3|\ge0\)=> \(3|y-3|+5\ge3.0+5=5\)

=> \(x^2+3|y-3|+5\ge0+5=5\)

Vậy Min(x2+3|y-3|+5)=5 khi x =0 và y=3

c) Ta có: |x-1|=|1-x| (Vì hai số x-1 và 1-x là hai số đối nhau, mà giá trị tuyệt đối của hai số đối nhau luôn bằng nhau)

=> |x-1|+|x-2016|=|1-x|+|x-2016|

Ta có: \(\text{|}1-x\text{|}+\text{|}x-2016\text{|}\ge\text{|}1-x+x-2016\text{|}=\text{|}-2015\text{|}=2015\)

Vậy Min(|x-1|+|x-2016|)=2015

Mấy cái này không tìm được giá trị lớn nhất nha bạn

3 tháng 3 2018

Nó thu gon mất cái đề nên mình không thấy được mấy cái đề sau. 3 câu d, e, f bạn lập bản biến thiên ra mà làm

5 tháng 9 2016

bạn cho nhìu ứa nên mik trả lời vài câu nha:

1.

A. Vì |x- 1/2| >=0       =>       Amin =0   

B.Vì |x + 3/4| >=0   =>      B >= 2 (cộng 2 mà)   =>       Bmin =2     khi   x+ 3/4 =0 ....

các câu còn lại làm tương tự nhé