K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Lời giải:

$x^2+2y^2+2xy-6x-8y+10=0$

$\Leftrightarrow (x^2+2xy+y^2)-6x-8y+y^2+10=0$

$\Leftrightarrow (x+y)^2-6(x+y)+9+(y^2-2y+1)=0$

$\Leftrightarrow (x+y-3)^2+(y-1)^2=0$

Do $(x+y-3)^2\geq 0; (y-1)^2\geq 0$ với mọi $x,y\in\mathbb{R}$

Do đó để tổng của chúng bằng $0$ thì $(x+y-3)^2=(y-1)^2=0$
$\Leftrightarrow y=1; x=2$

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

A.

$a^2+4b^2+9c^2=2ab+6bc+3ac$

$\Leftrightarrow a^2+4b^2+9c^2-2ab-6bc-3ac=0$

$\Leftrightarrow 2a^2+8b^2+18c^2-4ab-12bc-6ac=0$

$\Leftrightarrow (a^2+4b^2-4ab)+(a^2+9c^2-6ac)+(4b^2+9c^2-12bc)=0$

$\Leftrightarrow (a-2b)^2+(a-3c)^2+(2b-3c)^2=0$

$\Rightarrow a-2b=a-3c=2b-3c=0$

$\Rightarrow A=(0+1)^{2022}+(0-1)^{2023}+(0+1)^{2024}=1+(-1)+1=1$

 

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

B.

$x^2+2xy+6x+6y+2y^2+8=0$

$\Leftrightarrow (x^2+2xy+y^2)+y^2+6x+6y+8=0$

$\Leftrightarrow (x+y)^2+6(x+y)+9+y^2-1=0$

$\Leftrightarrow (x+y+3)^2=1-y^2\leq 1$ (do $y^2\geq 0$ với mọi $y$)

$\Rightarrow -1\leq x+y+3\leq 1$

$\Rightarrow -4\leq x+y\leq -2$

$\Rightarrow 2020\leq x+y+2024\leq 2022$

$\Rightarrow A_{\min}=2020; A_{\max}=2022$

NV
23 tháng 12 2020

\(x^2+2xy+y^2+6\left(x+y\right)+8=-y^2\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+8\le0\)

\(\Leftrightarrow\left(x+y+2\right)\left(x+y+4\right)\le0\)

\(\Rightarrow-4\le x+y\le-2\)

\(\Rightarrow2016\le B\le2018\)

\(B_{min}=2016\) khi \(\left(x;y\right)=\left(-4;0\right)\)

\(B_{max}=2018\) khi \(\left(x;y\right)=\left(-2;0\right)\)

NV
8 tháng 1

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+8\left(x-y\right)+16=3-2y^2\)

\(\Leftrightarrow\left(x-y\right)^2+8\left(x-y\right)+16=3-2y^2\)

\(\Leftrightarrow\left(x-y+4\right)^2=3-2y^2\) (1)

Do \(\left(x-y+4\right)^2\ge0;\forall x,y\)

\(\Rightarrow3-2y^2\ge0\Rightarrow y^2\le\dfrac{3}{2}\Rightarrow\left[{}\begin{matrix}y^2=0\\y^2=1\end{matrix}\right.\)

\(\Rightarrow y=\left\{-1;0;1\right\}\)

- Với \(y=-1\) thay vào (1):

\(\left(x+5\right)^2=1\Rightarrow\left[{}\begin{matrix}x+5=1\\x+5=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-4\\x=-6\end{matrix}\right.\)

- Với \(y=1\) thay vào (1):

\(\Rightarrow\left(x+3\right)^2=1\Rightarrow\left[{}\begin{matrix}x+3=1\\x+3=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)

- Với \(y=0\)

\(\Rightarrow\left(x+4\right)^2=3\) (ko có nghiệm nguyên do 3 ko phải SCP)

25 tháng 12 2015

\(x^2+2y^2-2xy+x-2y+1=0\)

\(4x^2+8y^2-8xy+4x-8y+4=0\)

\(4x^2-4x\left(2y-1\right)+\left(2y-1\right)^2+8y^2-8y+4-\left(2y-1\right)^2=0\)

\(\left(2x-2y+1\right)^2+\left(4y^2-4y+1\right)+3=0\)

\(\left(2x-2y+1\right)^2+\left(2y-1\right)^2+3=0\) ( vô lí)

=> KL...........

22 tháng 12 2016

vô lí

NV
7 tháng 2 2021

\(x^2+2y^2-3xy=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow x-2y=0\) (do \(x>y\) nên \(x-y>0\))

\(\Leftrightarrow x=2y\)

\(\Rightarrow A=\dfrac{6.2y+16y}{5.2y-3y}=\dfrac{28y}{7y}=4\)

=>x^2-2xy+y^2+y^2+2y+1=0

=>(x-y)^2+(y+1)^2=0

=>x=y=-1

B=-2022-2023=-4045

AH
Akai Haruma
Giáo viên
27 tháng 5 2023

Lời giải:

$P=(x^2+y^2+2xy)+y^2-6x-8y+2028$

$=(x+y)^2-6(x+y)+(y^2-2y)+2028$
$=(x+y)^2-6(x+y)+9+(y^2-2y+1)+2018$

$=(x+y-3)^2+(y-1)^2+2018\geq 0+0+2018=2018$

Vậy $P_{\min}=2018$

Giá trị này đạt tại $x+y-3=y-1=0$

$\Leftrightarrow y=1; x=2$

25 tháng 2 2020

Ta có :

\(2x^2+y^2-6x+2xy-2y+5=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)^2+\left(x-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y-1\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-1\\x=2\end{cases}}\)