K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

a) x3 +x+2

=\(\left(x^3+x^2\right)-\left(x^2+x\right)+\left(2x+2\right)\)

=\(\left(x+1\right)\left(x^2-x+2\right)\)

b) x3-2x-1

=\(\left(x^3+x^2\right)-\left(x^2+x\right)-\left(x+1\right)\)

=\(\left(x+1\right)\left(x^2-x-1\right)\)

c) x3+3x2-4

=\(\left(x^3-x^2\right)+\left(4x^2+4x\right)-\left(4x+4\right)\)

=\(\left(x-1\right)\cdot\left(x^2+4x-4\right)\)

d) x3+3x2y-9xy2+5y3

=\(\left(x^3-x^2y\right)+\left(4x^2y-4xy^2\right)-\left(5xy^2-5y^3\right)\)

=\(\left(x-y\right)\left(x^2+4xy-5y^2\right)\)

=\(\left(x-y\right)^2\left(x-5y\right)\)

15 tháng 8 2016

a)

\(x^3+x+2\)

\(=\left(x^3+x^2\right)-\left(x^2+x\right)+\left(2x+2\right)\)

\(=x^2\left(x+1\right)-x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+2\right)\)

b)

\(x^3-2x-1\)

\(=\left(x^3+x^2\right)-\left(x^2+x\right)-\left(x+1\right)\)

\(=x^2\left(x+1\right)-x\left(x+1\right)-\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x-1\right)\)

c)

\(x^3-3x^2-4\)

\(=\left(x^3-x^2\right)+\left(4x^2-4x\right)+\left(4x-4\right)\)

\(=x^2\left(x-1\right)+4x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+2.2.x+2^2\right)\)

\(=\left(x-1\right)\left(x+2\right)^2\)

d)

\(x^3-3x^2y-9xy^2+5y^3\)

\(=\left(x^3-x^2y\right)+\left(4x^2y-4xy^2\right)-\left(5xy^2-5y^3\right)\)

\(=x^2\left(x-y\right)+4xy\left(x-y\right)-5y^2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-4xy-5y^2\right)\)

\(=\left(x-y\right)^2\left(x-5y\right)\)

AH
Akai Haruma
Giáo viên
25 tháng 12 2018

Bài 1:

a) \((a-b)(a+b)=a^2-b^2\) (theo hằng đẳng thức đáng nhớ)

b) \((8x^3y^3-12y^3-12x^3y^5):(2x^3y^2)=\frac{8x^3y^3}{2x^3y^2}-\frac{12y^3}{2x^3y^2}-\frac{12x^3y^5}{2x^3y^2}\)

\(=4y-\frac{6y}{x^3}-6y^3=4y-6x^{-3}y-6y^3\)

c)

\((x^3+1):(x^2-x+1)=\frac{x^3+1}{x^2-x+1}=\frac{(x+1)(x^2-x+1)}{x^2-x+1}=x+1\)

AH
Akai Haruma
Giáo viên
25 tháng 12 2018

Bài 2:

a)

\(6x^2y-18xy^2=6xy(x-3y)\)

b)

\(x^3+x^2-4x-4=(x^3+x^2)-(4x+4)=x^2(x+1)-4(x+1)\)

\(=(x+1)(x^2-4)=(x+1)(x^2-2^2)=(x+1)(x-2)(x+2)\)

14 tháng 3 2020

1, a,\(\left(-7x^2\right)\left(3x^2-x-2\right)\)

\(=-21x^4+7x^3+14x^2\)

\(b,\left(2x^3-3x^2-10x+3\right):\left(x-3\right)\)

2x^3-3x^2-10x+3 x-3 2x^2+3x-1 2x^3-6x^2 - 3x^2-10x+3 3x^2-9x - -x+3 -x+3 - 0

2,\(a,\left(x-3\right)\left(x^2+1\right)-\left(x-3\right)\left(x^2+3x+9\right)\)

\(=x^3+x-3x^2-3-x^3+27\)

\(=-3x^2+x+24\)

\(b,\left(2x+1\right)^2+\left(2x-1\right)^2+2\left(4x^2-1\right)\)

\(=4x^2+4x+1+4x^2-4x+1+8x^2-2\)

\(=24x^2\)

\(3,a,x^3-x^2-x+1\)

\(=x^2\left(x-1\right)-\left(x-1\right)\)

\(=\left(x-1\right)^2\left(x+1\right)\)

\(b,3x^2-7x-10\)

\(=3x^2+3x-10x-10\)

\(=3x\left(x+1\right)-10\left(x+1\right)\)

\(=\left(x+1\right)\left(3x-10\right)\)

4, a. Bn kiểm tra lại đề bài nhé

b,\(4x^2-12xy+10y^2\)

\(=\left(4x^2-12xy+9y^2\right)+y^2\)

\(=\left(2x-3y\right)^2+y^2\ge0\forall x,y\)

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

Bài 1: 

a: \(4x^2-4x-2=4x^2-4x+1-3=\left(2x-1\right)^2-3>=-3\forall x\)

Dấu '=' xảy ra khi x=1/2

b: \(x^4+4x^2+1>=1\forall x\)

Dấu '=' xảy ra khi x=0

c: \(2x^2-20x-7\)

\(=2\left(x^2-10x-\dfrac{7}{2}\right)\)

\(=2\left(x^2-10x+25-\dfrac{57}{2}\right)\)

\(=2\left(x-5\right)^2-57>=-57\forall x\)

Dấu '=' xảy ra khi x=5

2 tháng 2 2021

1.

\(x^4-6x^2-12x-8=0\)

\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\pm\sqrt{5}\)

2 tháng 2 2021

3.

ĐK: \(x\ge-9\)

\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)

\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)

Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)

\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)

\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)

\(\Leftrightarrow...\)