Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét ΔBAK vuông tại A và ΔBHK vuông tại H có
BK chung
KA=KH
=>ΔBAK=ΔBHK
=>BA=BH
mà KA=KH
nên BK là trung trực của AH
=>BK vuông góc AH
#\(N\)
`a,` Xét Tam giác `MPH` và Tam giác `MQH` có:
`MP = MQ (g``t)`
`MH` chung
\(\widehat{MHP}=\widehat{MHQ}=90^0\)
`=>` Tam giác `MPH =` Tam giác `MQH (ch - cgv)`
`=>`\(\widehat{MPH}=\widehat{MQH}\) `( 2` góc tương ứng `)`
`b,` Vì Tam giác `MPH =` Tam giác `MQH (a)`
`=>` \(\widehat{PMH}=\widehat{QMH}\) `( 2` góc tương ứng `)`
`=> MH` là tia phân giác của \(\widehat{PMQ}\)
`c,` Ta có: \(\widehat{MPH}=\widehat{MQH}=50^0\) `(CMT)`
Xét Tam giác `MQH` có:
\(\widehat{MHQ}+\widehat{MQH}+\widehat{QMH}=180^0\) `(`đlí tổng `3` góc trong `1` tam giác `)`
\(90^0+50^0+\widehat{QMH}=180^0\)
`->`\(\widehat{QMH}=180^0-90^0-50^0=40^0\)
\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)
Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:
\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)
\(\dfrac{9y^2}{25}-y^2=-4\)
\(-\dfrac{16}{25}y^2=-4\)
\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)
\(y^2=\dfrac{25}{4}\)
\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)
*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)
*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)
Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:
\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)
Lời giải:
Áp dụng tính chất tổng 3 góc trong một tam giác bằng $180^0$
a.
$x=180^0-80^0-45^0=55^0$
b.
$y=180^0-30^0-90^0=60^0$
c.
$z=180^0-30^0-25^0=125^0$
Bài 2:
1: Thay x=1 và y=-2 vào y=ax, ta được:
\(a\cdot1=-2\)
hay a=-2
Vậy: y=-2x
2: Khi x=3 thì \(y=-2\cdot3< >1\)
=>B không thuộc đồ thị
Khi x=-2 thì \(y=-2\cdot\left(-2\right)=4=y_C\)
=>C thuộc đồ thị
Khi x=4 thì \(y=4\cdot\left(-2\right)=-8< >2\)
=>D không thuộc đồ thị
Ta có: a//b
nên \(\widehat{E_1}+\widehat{F_1}=180^0\)
mà \(\widehat{E_1}-\widehat{F_1}=30^0\)
nên \(\left\{{}\begin{matrix}\widehat{E_1}=\dfrac{180^0+30^0}{2}=105^0\\\widehat{F_1}=180^0-105^0=75^0\end{matrix}\right.\)
Vì a//b
nên \(\left\{{}\begin{matrix}\widehat{F_2}=\widehat{E_1}=105^0\\\widehat{E_2}=\widehat{F_1}=75^0\end{matrix}\right.\)
1:
\(A=\dfrac{2}{3}+\dfrac{8}{9}+...+\dfrac{3^n-1}{3^n}\)
\(=1-\dfrac{1}{3}+1-\dfrac{1}{3^2}+...+1-\dfrac{1}{3^n}\)
\(=n-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^n}\right)\)
Đặt \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^n}\)
=>\(3B=1+\dfrac{1}{3^1}+...+\dfrac{1}{3^{n-1}}\)
=>\(2B=1+\dfrac{1}{3}+...+\dfrac{1}{3^{n-1}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^n}=1-\dfrac{1}{3^n}\)
=>\(2B=\dfrac{3^n-1}{3^n}\)
=>\(B=\dfrac{1}{2}-\dfrac{1}{2\cdot3^n}< \dfrac{1}{2}\)
\(A=n-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^n}\right)\)
\(=n-B>n-\dfrac{1}{2}\)