Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)
=>-6x+16=0
=>-6x=-16
hay x=8/3(nhận)
c: \(\Leftrightarrow\dfrac{x+1+x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x+2}\)
\(\Leftrightarrow2x\left(x+2\right)=2\left(x^2-1\right)\)
\(\Leftrightarrow2x^2+4x-2x^2+2=0\)
=>4x+2=0
hay x=-1/2(nhận)
\(a.\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\)
\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(x-1\right)=\left(3x-2\right)\left(3x+2\right)\left(x+1\right)\)
\(\Leftrightarrow x-1=3x-2\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
c: =>x-3=0
hay x=3
d: \(\Leftrightarrow\left(3x-1\right)\cdot\left(x^2+2-7x+10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)
hay \(x\in\left\{\dfrac{1}{3};3;4\right\}\)
\(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right).\)
\(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\left(x+1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0.\)
\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(x-1-3x+2\right)=0.\)
\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(-2x+1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0.\\x+1=0.\\-2x+1=0.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}.\\x=-1.\\x=\dfrac{1}{2}.\end{matrix}\right.\)
c: =>(x-3)(x2+3x+5)=0
=>x-3=0
hay x=3
d: =>(3x-1)(x2+2-7x+10)=0
=>(3x-1)(x-3)(x-4)=0
hay \(x\in\left\{\dfrac{1}{3};3;4\right\}\)
1) Ta có: \(5\left(x-3\right)\left(x-7\right)-\left(5x+1\right)\left(x-2\right)=-8\)
\(\Leftrightarrow5\left(x^2-10x+21\right)-\left(5x^2-10x+x-2\right)=-8\)
\(\Leftrightarrow5x^2-50x+105-5x^2+9x+2+8=0\)
\(\Leftrightarrow-41x=-115\)
hay \(x=\dfrac{115}{41}\)
2) Ta có: \(x\left(x+1\right)\left(x+2\right)-\left(x+4\right)\left(3x-5\right)=84-5x\)
\(\Leftrightarrow x\left(x^2+3x+2\right)-\left(3x^2+7x-20\right)=84-5x\)
\(\Leftrightarrow x^3+3x^2+2x-3x^2-7x+20-84+5x=0\)
\(\Leftrightarrow x^3=64\)
hay x=4
3) Ta có: \(\left(9x^2-5\right)\left(x+3\right)-3x^2\left(3x+9\right)=\left(x-5\right)\left(x+4\right)-x\left(x-11\right)\)
\(\Leftrightarrow9x^3+27x^2-5x-15-9x^3-27x^2=x^2-x-20-x^2+11x\)
\(\Leftrightarrow-5x-15=10x-20\)
\(\Leftrightarrow-5x-10x=-20+15\)
\(\Leftrightarrow x=\dfrac{-5}{-15}=\dfrac{1}{3}\)
a) Ta có: \(2\left(3x+1\right)-4\left(5-2x\right)>2\left(4x-3\right)-6\)
\(\Leftrightarrow6x+2-20+8x>8x-6-6\)
\(\Leftrightarrow14x-18-8x+12>0\)
\(\Leftrightarrow6x-6>0\)
\(\Leftrightarrow6x>6\)
hay x>1
Vậy: S={x|x>1}
b) Ta có: \(9x^2-3\left(10x-1\right)< \left(3x-5\right)^2-21\)
\(\Leftrightarrow9x^2-30x+3< 9x^2-30x+25-21\)
\(\Leftrightarrow9x^2-30x+3-9x^2+30x-4< 0\)
\(\Leftrightarrow-1< 0\)(luôn đúng)
Vậy: S={x|\(x\in R\)}
1:
a: =>(|x|+4)(|x|-1)=0
=>|x|-1=0
=>x=1; x=-1
b: =>x^2-4>=0
=>x>=2 hoặc x<=-2
d: =>|2x+5|=2x-5
=>x>=5/2 và (2x+5-2x+5)(2x+5+2x-5)=0
=>x=0(loại)
a) \(\left(3x-2\right)\left(4x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{2}{3};-\dfrac{5}{4}\right\}\)
b) \(\left(2,3x-6,9\right)\left(0,1x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2,3x-6,9=0\\0,1x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-20\end{matrix}\right.\)
c) \(\left(4x+2\right)\left(x^2+1\right)=0\)
Vì \(x^2+1\ge1>0\forall x\)
\(\Rightarrow4x+2=0\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)
d) \(\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+7=0\\x-5=0\\5x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\\x=-\dfrac{1}{5}\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{7}{2};5;-\dfrac{1}{5}\right\}\)
e) \(\left(x-1\right)\left(2x+7\right)\left(x^2+2\right)=0\)
Vì \(x^2+2\ge2>0\forall x\)
\(\Rightarrow\left(x-1\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)
f) \(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\)
\(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\left(x+1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[\left(3x+2\right)\left(x+1\right)\right].\left(x-1-3x+2\right)=0\)
\(\Leftrightarrow\left(3x^2+5x+2\right)\left(-2x+1\right)=0\)
\(\Leftrightarrow\left(3x^2+3x+2x+2\right)\left(-2x+1\right)=0\)
\(\Leftrightarrow\left[3x\left(x+1\right)+2\left(x+1\right)\right]\left(-2x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x+2\right)\left(-2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x+2=0\\-2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{2}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{-1;-\dfrac{2}{3};\dfrac{1}{2}\right\}\)
2:
a: \(9x^2-1=\left(3x\right)^2-1=\left(3x-1\right)\left(3x+1\right)\)
b: \(2\left(x-1\right)+x^2-x\)
\(=2\left(x-1\right)+x\left(x-1\right)\)
\(=\left(x-1\right)\left(x+2\right)\)
c: \(3x^2+14x-5\)
\(=3x^2+15x-x-5\)
\(=3x\left(x+5\right)-\left(x+5\right)=\left(x+5\right)\left(3x-1\right)\)
3:
a: \(2x\left(x-1\right)-2x^2=4\)
=>\(2x^2-2x-2x^2=4\)
=>-2x=4
=>x=-2
b: \(x\left(x-3\right)-\left(x+2\right)\left(x-1\right)=5\)
=>\(x^2-3x-\left(x^2+x-2\right)=5\)
=>\(x^2-3x-x^2-x+2=5\)
=>-4x=3
=>x=-3/4
c: \(4x^2-25+\left(2x+5\right)^2=0\)
=>\(\left(2x-5\right)\left(2x+5\right)+\left(2x+5\right)^2=0\)
=>\(\left(2x+5\right)\left(2x-5+2x+5\right)=0\)
=>4x(2x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
a) \(\left(2x+3\right)^2-3\left(x-4\right)\left(x+4\right)=\left(x-2\right)^2+1\)
\(\Leftrightarrow4x^2+12x+9-3\left(x^2-16\right)=x^2-4x+4+1\)
\(\Leftrightarrow4x^2+12x+9-3x^2+48=x^2-4x+5\)
\(\Leftrightarrow x^2+12x+57=x^2-4x+5\)
\(\Leftrightarrow16x+52=0\)
\(\Leftrightarrow x=-\frac{13}{4}\)
b) \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)
\(\Leftrightarrow\)Xem lại đề !
c) \(x\left(x-1\right)-\left(x-3\right)\left(x+4\right)=5x\)
\(\Leftrightarrow x^2-x-x^2-x+12=5x\)
\(\Leftrightarrow-2x+12=5x\)
\(\Leftrightarrow7x-12=0\)
\(\Leftrightarrow x=\frac{12}{7}\)
d) \(\left(2x+1\right)\left(2x-1\right)=4x\left(x-7\right)-3x\)
\(\Leftrightarrow4x^2-1=4x^2-28x-3x\)
\(\Leftrightarrow28x+3x-1=0\)
\(\Leftrightarrow31x-1=0\)
\(\Leftrightarrow x=\frac{1}{31}\)
a) (2x + 3)2 - 3 (x - 4) (x + 4)= (x - 2)2 + 1
<=> 4x^2 + 12x + 9 - 3(x^2 - 16) = x^2 - 4x + 4 + 1
<=> 4x^2 + 12x + 9 - 3x^2 + 48 = x^2 - 4x + 5
<=> x^2 + 12x + 57 = x^2 - 4x + 5
<=> x^2 - x^2 + 12x + 4x + 57 - 5 = 0
<=> 16x + 52 = 0
<=> 16x = -52
<=> x = -13/4