Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: =>3x=6
=>x=2
b: =>4x=16
=>x=4
c: =>4x-6=9-x
=>5x=15
=>x=3
d: =>7x-12=x+6
=>6x=18
=>x=3
2:
a: =>2x<=-8
=>x<=-4
b: =>x+5<0
=>x<-5
c: =>2x>8
=>x>4
a) 3x+2>2b-3
\(\Leftrightarrow\)?
b) 5x-1>4x+3
\(\Leftrightarrow\)5x-4x>3+1
\(\Leftrightarrow\)x>4
Vậy phương trình có tập nghiệm S={x|x>4}
c)2-x/3>3-2x/5
\(\Leftrightarrow\)2-3>(-2x/5)+(x/3)
\(\Leftrightarrow\)-1>-x/15
\(\Leftrightarrow\)1<x/15
\(\Leftrightarrow\)x>1/15
Vậy phương trình có tập nghiệm S={x|x>1/15}
1:
a: 2x-3=5
=>2x=8
=>x=4
b: (x+2)(3x-15)=0
=>(x-5)(x+2)=0
=>x=5 hoặc x=-2
2:
b: 3x-4<5x-6
=>-2x<-2
=>x>1
câu 1
a) 5x(x-2)=0 =>\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b)(x+5)(2x-7)=0 =>\(\left[{}\begin{matrix}x+5=0\\2x-7=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-5\\x=\dfrac{7}{2}\end{matrix}\right.\)
c) \(\dfrac{5x}{x+2}\)=4 Đk x\(\ne\)-2
=> 5x=4(x+2)
=>5x-4x=8
=>x=8(tmđk)
a: =>2x<=-8
=>x<=-4
b: =>x+5<0
=>x<-5
c: =>2x>8
=>x>4
d: =>3x>=9
=>x>=3
3:
a: =>x=0 hoặc x+5=0
=>x=0 hoặc x=-5
b: =>x^2=4
=>x=2 hoặc x=-2
c: =>(x-5)(2x+1+x+6)=0
=>(x-5)(3x+7)=0
=>x=5 hoặc x=-7/3
1.
a. 2x - 6 > 0
\(\Leftrightarrow\) 2x > 6
\(\Leftrightarrow\) x > 3
S = \(\left\{x\uparrow x>3\right\}\)
b. -3x + 9 > 0
\(\Leftrightarrow\) - 3x > - 9
\(\Leftrightarrow\) x < 3
S = \(\left\{x\uparrow x< 3\right\}\)
c. 3(x - 1) + 5 > (x - 1) + 3
\(\Leftrightarrow\) 3x - 3 + 5 > x - 1 + 3
\(\Leftrightarrow\) 3x - 3 + 5 - x + 1 - 3 > 0
\(\Leftrightarrow\) 2x > 0
\(\Leftrightarrow\) x > 0
S = \(\left\{x\uparrow x>0\right\}\)
d. \(\dfrac{x}{3}-\dfrac{1}{2}>\dfrac{x}{6}\)
\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{3}{6}>\dfrac{x}{6}\)
\(\Leftrightarrow2x-3>x\)
\(\Leftrightarrow2x-3-x>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
\(S=\left\{x\uparrow x>3\right\}\)
2.
a.
Ta có: a > b
3a > 3b (nhân cả 2 vế cho 3)
3a + 7 > 3b + 7 (cộng cả 2 vế cho 7)
b. Ta có: a > b
a > b (nhân cả 2 vế cho 1)
a + 3 > b + 3 (cộng cả 2 vế cho 3) (1)
Ta có; 3 > 1
b + 3 > b + 1 (nhân cả 2 vế cho 1b) (2)
Từ (1) và (2) \(\Rightarrow\) a + 3 > b + 1
c.
5a - 1 + 1 > 5b - 1 + 1 (cộng cả 2 vế cho 1)
5a . \(\dfrac{1}{5}\) > 5b . \(\dfrac{1}{5}\) (nhân cả 2 vế cho \(\dfrac{1}{5}\) )
a > b
3.
a. 2x(x + 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(S=\left\{0,-5\right\}\)
b. x2 - 4 = 0
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(S=\left\{0,4\right\}\)
d. (x - 5)(2x + 1) + (x - 5)(x + 6) = 0
\(\Leftrightarrow\left(x-5\right)\left(2x+1+x+6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-7}{3}\end{matrix}\right.\)
\(S=\left\{5,\dfrac{-7}{3}\right\}\)
c: =>2x+4>=2x+2-3
=>4>=-1(luôn đúng)
a: 5x+10>3x+3
=>2x>-7
=>x>-7/2
Bài 1: Giaỉ các pt:
a) \(3x-15=0\\ < =>3x=15\\ =>x=\dfrac{15}{3}=5\)
Vậy: tập nghiệm của phương trình là S= {5}
b) \(\left(x-3\right)\left(2x+4\right)=0\\ < =>\left[{}\begin{matrix}x-3=0\\2x+4=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy: tập nghiệm của phương trình là S= {-2;3}
Bài 2:
Vì \(3a-5< 3b-5\\ =>3a-5+5< 3b-5+5\) (cộng 5 vào 2 vế)
\(< =>3a< 3b\\ =>3a.\dfrac{1}{3}< 3b.\dfrac{1}{3}\) (nhân 1/3 vào 2 vế)
\(< =>a< b\)
Bài 3: Giaỉ pt:
\(\dfrac{1}{x+1}-\dfrac{5}{x-2}=\dfrac{15}{\left(x+1\right)\left(x-2\right)}\\ \left(ĐKXĐ:\left[{}\begin{matrix}x+1\ne0< =>x\ne-1\\x-2\ne0< =>x\ne2\end{matrix}\right.\right)\)
\(< =>\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}-\dfrac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{15}{\left(x+1\right)\left(x-2\right)}\\ < =>x-2-5x-5=15\\ < =>-5x+x=15+5+2\\ < =>-4x=22\\ =>x=\dfrac{22}{-4}=-\dfrac{11}{2}\left(TMĐK\right)\)
Vậy: tập nghiệm của phương trình là S= \(\left\{-\dfrac{11}{2}\right\}\)
Bài 4: Giaỉ bpt - biểu diễn trục số
\(4x+3\ge7\\ < =>4x\ge4\\ < =>x\ge\dfrac{4}{4}\\ < =>x\ge1\)
Vậy: tập nghiệm của bất phương trình là S= \(\left\{x|x\ge1\right\}\)
Biểu diễn trục số:
Bài 1 :
a ) 3x - 15 = 0
\(\Leftrightarrow\) 3x = 15
\(\Leftrightarrow\) x = 5
Vậy phương trình có nghiệm x = 5 .
b ) \(\left(x-3\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\2x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy phương trình có nghiệm x = 3 hoặc x = -2