K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(B=\dfrac{3}{5}x^2+\dfrac{2}{5}x-0,5-1+\dfrac{2}{5}x-\dfrac{3}{5}x^2=-1.5\)

b: \(=1,7-12a^2-2+5a^2-7a+2.3+7a^2+7a\)

=2

c: \(=1-b^2-5b+3b^2+1+5b-2b^2=2\)

23 tháng 4 2017

a) \(\left(\frac{3}{5}x^2-0,4x-0,5\right)-\left(1-\frac{2}{5}x+0,6x^2\right)\)

\(=\frac{3}{5}x^2-0,4x-0,5-1+\frac{2}{5}x-0,6x^2\)

\(=\frac{3}{5}x^2-\frac{2}{5}x-\frac{1}{2}-1+\frac{2}{5}x-\frac{3}{5}x^2\)

\(=-\frac{3}{2}\)

b) \(1,7-12a^2-2+5a^2-7a+2,3+7a^2+7a\)

\(=2\)

c) \(1-b^2-5b+3b^2+1+5b-2b^2\)

\(=2\)

a: Ta có: \(x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)

\(=x^3+x^2+x-x^3-x^2-x+5\)

=5

b: Ta có: \(x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)

\(=2x^2+x-x^3-2x^2+x^3-x+3\)

=3

c: Ta có: \(4\left(6-x\right)+x^2\left(3x+2\right)-x\left(5x-4\right)+3x^2\left(1-x\right)\)

\(=24-4x+3x^3+2x^2-5x^2+4x+3x^2-3x^3\)

=24

 

22 tháng 8 2021

cảm ơn bạn nhiều <3

 

19 tháng 8 2021

a. x ( 5x - 3 ) - x2 ( x - 1 ) + x ( x2 - 6x ) - 10 + 3x

= 5x2 - 3x - x3 + x2 + x3 - 6x2 - 10 + 3x

= ( - x3 + x3 ) + ( 5x2 + x2 - 6x2 ) + ( - 3x + 3x ) - 10

= - 10

=> Giá trị của bthuc trên không phụ thuộc vào biến 

b. x ( x2 + x + 1 ) - x2 ( x + 1 ) - x + 5

= x3 + x2 + x - x3 - x2 - x + 5

= ( x3 - x3 ) + ( x2 - x2 ) + ( x - x ) + 5

= 5

=> Giá trị của bthuc trên không phụ thuộc vào biến  

\(a,\left(\frac{3}{5}x^2-0.4x-0.5\right)-\left(1-\frac{2}{5}x+0.6x^2\right)\)

\(=0.6x^2-0.4x-0.5-1+0.4x-0.6x^2\)

\(=-1,5\)

=> biểu thức a ko phụ thuộc vào biến

\(b,1.7-12x^2-\left(2-5x^2+7x\right)+\left(2.3+7x^2+7x\right)\)

\(=1.7-12x^2-2+5x^2-7x+2.3+7x^2+7x\)

\(=2\)

=> biểu thức b ko phụ thuộc vào biến

\(c,1-y^2-\left(5y-3y^2\right)+\left(1+5y-2y^2\right)\)

\(=1-y^2-5y+3y^2+1+5y-2y^2\)

\(=2\)

=> biểu thức c ko phụ thuộc vào biến

12 tháng 3 2022

Bài 2 : 

a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)

Dấu ''='' xảy ra khi x = 2 

b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)

Dấu ''='' xảy ra khi x = -1 

12 tháng 3 2022

 Bài 1 : 

a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)

c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)

15 tháng 7 2021

a) x(2x+1)-x2(x+2)+(x3-x+3)= 2x2+x-x3-2x2+x3-x+3= 3

b)x (3x2-x+5)-(2x3+3x-16)-x(x2-x+2)= 3x3-x2+5x-2x3-3x+16-x3+x2-2x= 16

`@` `\text {Ans}`

`\downarrow`

`(-x^4 - x^3) + (x^4 + 2x^3 + 5x^2 + 3x) + (-5x^2 - 3x - x^3)`

`= -x^4 - x^3 + x^4 + 2x^3 + 5x^2 + 3x - 5x^2 - 3x - x^3`

`= (-x^4+x^4) + (-x^3 + 2x^3 - x^3) + (5x^2 - 5x^2) + (3x - 3x)`

`= 0 + 0 + 0 + 0`

`= 0`

Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.

`@` `\text {Kaizuu lv uuu}`

4 tháng 5 2016

a) <=> (8-5x+x-2)(x+2) + 4(x^2-x-2)=0

<=> 6x +12 - 4x^2 - 8x +4x^2 -4x -8 =0

<=> -6x -4 = 0

<=> x= 4/6

 

4 tháng 5 2016

Ta có VT =\(a^2-c^2-2ab+b^2-\left[\left(a-b\right)^2-c^2\right]\)

\(a^2-c^2-2ab+b^2-\left(a^2-2ab+b^2\right)+c^2\)

=\(a^2-c^2-2ab+b^2-a^2+2ab-b^2+c^2\)

= 0 =VP (đpcm)