Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GIẢI:
a) Xét Δ ABC và Δ AED, ta có :
(đối đỉnh)
AB = AD (gt)
AC = AD (gt)
=> Δ ABC = Δ AED (hai cạnh góc vuông)
=> BC = DE
Xét Δ ABD, ta có :
(Δ ABC vuông tại A)
=> AD AE
=>
=> Δ ABD vuông tại A.
mà : AB = AD (gt)
=> Δ ABD vuông cân tại A.
=>
cmtt :
=>
mà : ở vị trí so le trong
=> BD // CE
b) Xét Δ MNC, ta có :
NK MC = > NK là đường cao thứ 1.
MH NC = > MH là đường cao thứ 2.
NK cắt MH tại A.
=> A là trực tâm. = > CA là đường cao thứ 3.
=> MN AC tại I.
mà : AB AC
=> MN // AB.
c) Xét Δ AMC, ta có :
(đối đỉnh)
(Δ ABC = Δ AED)
=> (cùng phụ góc ABC)
=> Δ AMC cân tại M
=> AM = ME (1)
Xét Δ AMI và Δ DMI, ta có :
(MN AC tại I)
IM cạnh chung.
mặt khác : (so le trong)
(đồng vị)
mà : (cmt)
=>
=> Δ AMI = Δ DMI (góc nhọn – cạnh góc vuông)
=> MA = MD (2)
từ (1) và (2), suy ta : MA = ME = MD
ta lại có : ME = MD = DE/2 (D, M, E thẳng hàng)
=>MA = DE/2.
Câu hỏi của Phạm An Nguyên - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi của Phạm An Nguyên - Toán lớp 8 - Học toán với OnlineMath
1. Để chứng minh cung DE có số đo không đổi, ta cần chứng minh góc \(\angle BOC\) có số đo không đổi. Thực vậy, theo tính chất hai tiếp tuyến cắt nhau, OB và OC là phân giác ngoài của tam giác ABC. Ta có
\(\angle BOC=180^{\circ}-\frac{\angle MBC}{2}-\frac{\angle NCB}{2}=\frac{\angle ABC}{2}+\frac{\angle ACB}{2}=90^{\circ}-\frac{\angle BAC}{2}=90^{\circ}-\frac{a}{2}\)
Do đó góc \(\angle BOC\) có số đo không đổi. Suy ra cung DE có số đo không đổi.
2. Do CD vuông góc với AB nên BC,BD là đường kính của hai đường tròn (O) và (O'). Suy ra
\(\angle CFB=\angle DEB=90^{\circ}\to\angle CFD=\angle CED=90^{\circ}.\) Vậy tứ giác CDEF nội tiếp. Do đó \(\angle ECF=\angle EDF\to\angle FAB=\angle ECF=\angle EDF=\angle EDB\)
Vậy AB là phân giác của góc AEF.
3. Đề bài có chút nhầm lẫn, "kẻ \(IH\perp BC\) mới đúng. Do tam giác ABC nhọn và I nằm trong nên các điểm H,K,L nằm trên các cạnh của tam giác. Sử dụng bất đẳng thức \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2,\) ta suy ra \(AL^2+BL^2\ge\frac{1}{2}\left(AL+BL\right)^2=\frac{1}{2}AB^2.\) Tương tự ta cũng có \(BH^2+CH^2\ge\frac{1}{2}BC^2,KC^2+KA^2\ge\frac{1}{2}AC^2.\) Mặt khác theo định lý Pitago
\(AL^2+BH^2+CK^2=\left(IA^2-IL^2\right)+\left(IB^2-IH^2\right)+\left(IC^2-IK^2\right)\)
\(=\left(IA^2-IK^2\right)+\left(IB^2-IL^2\right)+\left(IC^2-IH^2\right)\)
\(=BL^2+CH^2+AK^2.\)
Thành thử \(AL^2+BH^2+CK^2=\frac{\left(AL^2+BL^2\right)+\left(BH^2+CH^2\right)+\left(CK^2+AK^2\right)}{2}\ge\frac{AB^2+BC^2+CA^2}{2}.\)
Dấu bằng xảy ra khi \(AL=BL,BH=CH,CK=AK\Leftrightarrow I\) là giao điểm ba đường trung trực.
ý 1 câu a )
có ED vuông góc BC ; AH vuông góc BC => ED//AH => tam giác CDE đồng dạng vs tam giác CHA ( talet) (1)
xét tam giác CHA và tam giác CAB có CHA=CAB=90 độ ; C chung => tam giác CHA đồng dạng vs tam giác CAB ( gg) (2)
từ (1) và (2) =>tam giác CDE đồng dạng tam giác CAB ( cùng đồng dạng tam giác CHA )
có tam giác CDE đồng dạng tam giác CAB (cmt) => \(\frac{CE}{CB}=\frac{CD}{CA}\)
xét tam giác BAC và tam giác ADC có góc C chung và \(\frac{CE}{BC}=\frac{CD}{AC}\left(CMT\right)\) => tam giác BAC đồng dạng vs tam giác ADC ( trường hợp c-g-c) , mấy câu kia quên mịa nó r -.-
Bài 2)
1) xét tứ giác AEHF có góc A=90* F=90* E=90* (GT)
==)) AEHF Là hình chữ nhật
2) Vì AEHF là hình chữ nhật ==)) EF=AH(đl) gọi O là giao điểm của EF và AH
==))EO=OF=AO=OH
EO=AO ==)) tam giác EOA cân tại O,==)) OEA=góc OAE
mà góc OAE=góc BCA (cùng phụ với góc HAC ) ==))góc OEA =góc BCA(1)
góc A=90* chung ==)) tam giác EAF~tam giác CAB (g-g)
==))EA/CA=AF/AB ==))AE.AB=AF.AC
2)ta có BH.HC=AH2
AH2=( AO+OH )2=AO2+OH2+2AO.OH mà AO=OH ==))AH2=4.OA2
4EO.OF=4OE2 mà OE=OA(cmt)==))4EO.OF=AH2=BH.HC
Câu 1:
a: \(\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot CB}{CH\cdot CB}=\dfrac{BH}{CH}\)
b: \(BD\cdot CE\cdot BC\)
\(=\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\cdot BC\)
\(=AH^4\cdot\dfrac{BC}{AB\cdot AC}=\dfrac{AH^4}{AH}=AH^3\)