Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Tấn Phát - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo!
Câu hỏi của Nguyễn Tấn Phát - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo!
a, bc^2 = ab^2 +ac^2
<=.> (ae+eb)^2 +(af+fc)^2
<=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC
<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)
<=>EB^2 +CF^2 + AH ^2 + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF
<=>EB^2 +CF^2+3 AH^2 (đpcm)
b, cb =2a là thế nào vậy
a) Tương tự: https://h.vn/hoi-dap/question/392113.html (1)
EH // AC (cùng _I_ AB)
=> \(\widehat{BHE}=\widehat{HCF}\) (2 góc so le trong)
=> \(\Delta EBH\) ~ \(\Delta FHC\) (g - g)
\(\Rightarrow\frac{EB}{FH}=\frac{EH}{FC}\)
\(\Rightarrow EB\times FC=EH\times FH\)
\(\Rightarrow EB\times FC\times BC=BC\times EH\times FH\) (2)
Từ (1) và (2) => đpcm
b)
Thay AH = x và BC = 2a vào \(AH^3=BC\times EH\times FH\), ta có:
\(x^3=2a\times EH\times FH\)
\(\Rightarrow FA\times AE=\frac{x^3}{2a}\) (EH = FA và FH = AE)
\(S_{AEF}=\frac{1}{2}\times FA\times AE=\frac{1}{2}\times\frac{x^3}{2a}=\frac{x^3}{4a}\left(\text{đ}v\text{d}t\right)\)
b) Theo câu a ta có: \(BE.CF=HE.HF\)
Mà \(HE^2=EB.EA;HF^2=FA.FC\)
=> \(HE^2.HF^2=EB.FC.EA.FA=HE.HF.EA.FA\)
=> \(EA.FA=HE.HF=\frac{AH^3}{BC}=\frac{x^3}{2a}\)
=> \(S_{AEF}=\frac{1}{2}.EA.FA=\frac{x^3}{4a}\)
c) Để Diện tích tam giác AEF đạt giá trị lớn nhất khi và chỉ khi x đạt giá trị lớn nhất
Ta có: \(x^2=AH^2=BH.CH\le\frac{\left(BH+CH\right)^2}{4}=\frac{BC^2}{4}=\frac{4a^2}{4}=a^2\)
=> \(x\le a\)
"=" xảy ra khi và chỉ khi BH=CH=a
Vậy \(maxS_{ABC}=\frac{a^3}{4a}=\frac{a^2}{4}\) tại x=a