Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từng bài 1 thôi bạn!
vẽ trên đt thông cảm!
Do đường tròn ngoại tiếp tam giác ABC có tâm là O
Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)
Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\))
Mà AK là phân giác của \(\widehat{BAC}\)
=> AK là phân giác
\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)
Theo bổ đề trên ta có tứ giác ANMO là hình bình hành
=> HK//AO
=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)
Hay tam giác NAK cân tại N mà N là trung điểm AH
=> AN=NH=NK
=> \(\Delta AHK\)vuông tại K
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
a: góc OAD+góc OMD=180 độ
=>OADM nội tiếp
b: ΔOBC cân tại O
mà ON là đường cao
nên ONlà trung trực của BC
=>sđ cung NB=sd cung NC
=>góc BAN=góc CAN
=>AN là phân giác của góc BAC
góc DAI=1/2*sđ cung AN
góc DIA=1/2(sđ cung AB+sđ cung NC)
=1/2(sđ cung AB+sđ cung NB)
=1/2*sđ cung AN
=>góc DAI=góc DIA
=>ΔDAI cân tại D
a/
Ta có
\(\widehat{APQ}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow PQ\perp AD\)
\(BC\perp AD\left(gt\right)\)
=> PQ//BC (cùng vg với AD)
=> BQPC là hình thang
Xét tg OPQ có
OP = OQ (bán kính (O)) => tg OPQ cân tại O
\(OM\perp BC\left(gt\right);AD\perp BC\) => OM//AD
Mà \(AD\perp PQ\left(cmt\right)\)
\(\Rightarrow OM\perp PQ\)
\(\Rightarrow\widehat{QOE}=\widehat{POE}\) (trong tg cân đường cao xp từ đỉnh tg cân đồng thời là đường phân giác)
Mà \(sđ\widehat{QOE}=sđcungQE;sđ\widehat{POE}=sđcungPE\) (góc ở tâm)
=> sđ cung QE = sđ cung PE (1)
Ta có
sđ cung BE = sđ cung CE (đường thẳng đi qua tâm đường tròn và vuông góc với dây cung thì chia đôi cung chắn) (2)
Ta có
sđ cung BQ = sđ cung BE - sđ cung QE (3)
sđ cung CP = sđ cung CE - sđ cung PE (4)
Từ (1) (2) (3) (4) => sđ cung BQ = sđ cung CP
=> BQ = CP (Hai cung có số đo bằng nhau thì độ dài 2 dây trương cung bằng nhau)
=> BQPC là hình thang cân
b/ Gọi I là giao của PQ với M
Ta có
OM//AD (cmt) => MI//DP
PQ//BC (cmt) => PI//DM
=> IMDP là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> PI = DM (cạnh đối hbh)
Xét tg cân OPQ có
\(OM\perp PQ\left(cmt\right)\)
\(\Rightarrow PI=QI=\dfrac{QP}{2}\) (trong tg cân đường cao xp từ đỉnh tg cân đồng thời là đường trung tuyến)
\(\Rightarrow DM=PI=\dfrac{QP}{2}\Rightarrow QP=2DM\)
c/
Ta có
\(sđ\widehat{QAE}=\dfrac{1}{2}sđcungQE;sđ\widehat{PAE}=\dfrac{1}{2}sđcungPE\) (góc nội tiếp)
Mà sđ cung QE = sđ cung PE (cmt)
\(\Rightarrow\widehat{QAE}=\widehat{PAE}\)
d/
Ta có
\(BH\perp AC\) (trong tg 3 đường cao đồng quy)
\(\widehat{ACQ}=90^o\) (góc nt chawns nửa đường tròn) \(\Rightarrow CQ\perp AC\)
=> BH//CQ
\(CH\perp AB\)
\(\widehat{ABQ}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow BQ\perp AB\)
=> CH//BQ
=> BQCH là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> BQ=CH (cạnh đối hbh)
Mà BQ=CP (cmt)
=> CH=CP => tg CHP cân tại C
Mặt khác ta có \(BC\perp AD\Rightarrow BC\perp HP\)
=> CD là trung trực của HP (trong tg cân đường cao xp từ đỉnh tg cân đồng thời là đường trung trực)
e/
Ta có
\(OM\perp BC\Rightarrow MB=MC\) (trong đường tròn đường thẳng đi qua tâm và vuông góc với dây cung thì chia đôi dây cung)
=> M là trung điểm của BC
Xét hình bình hành BQCH
Nối Q với H cắt BC tại M' => M'B = M'C (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
Mà M cũng là trung điểm của BC \(\Rightarrow M'\equiv M\)
=> Q, M, H thẳng hàng