Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT\(\Leftrightarrow\left(x^2-4x+5\right)+3\sqrt{x^2-4x+5}-2m-2=0\)
Đặt: \(a=x^2-4x+5\left(a\ge1\right)\)
Pt trở thành: \(a^2+3a-2m-2=0\)
Pt trên có nghiệm khi:
\(\Delta\ge0\Leftrightarrow9+4\left(2m+2\right)\ge0\Leftrightarrow m\ge-\dfrac{17}{8}\)
\(x^4+4x^3+4x^2-4mx^2-8mx+3m+1=0\)
\(\Leftrightarrow\left(x^2+2x\right)^2-4m\left(x^2+2x\right)+3m+1=0\)
Đặt \(x^2+2x=t\ge-1\)
\(\Rightarrow f\left(t\right)=t^2-4m.t+3m+1=0\) (1)
\(\Delta'=4m^2-3m-1\ge0\Rightarrow\)\(\left[{}\begin{matrix}m\ge1\\m\le-\dfrac{1}{4}\end{matrix}\right.\)
Khi đó (1) có 2 nghiệm thỏa mãn \(t_1\le t_2< -1\) khi
\(\left\{{}\begin{matrix}f\left(-1\right)>0\\\dfrac{t_1+t_2}{2}< -1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7m+2>0\\2m< -1\end{matrix}\right.\) (ko tồn tại m thỏa mãn)
\(\Rightarrow\) (1) luôn có ít nhất 1 nghiệm không nhỏ hơn -1
\(\Rightarrow\) Pt đã cho có nghiệm khi \(\left[{}\begin{matrix}m\ge1\\m\le-\dfrac{1}{4}\end{matrix}\right.\)
\(VT=\sqrt{\left(x+2\right)^2+4}+\sqrt{\left(3-x\right)^2+1}\)
\(VT\ge\sqrt{\left(x+2+3-x\right)^2+\left(2+1\right)^2}=\sqrt{34}\)
Pt có nghiệm khi và chỉ khi \(m\ge\sqrt{34}\)
Bạn kiểm tra lại đề, sao có 2 dầu = trong pt thế kia nhỉ?
1.
Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)
Pt trở thành:
\(4t=t^2-5+2m-1\)
\(\Leftrightarrow t^2-4t+2m-6=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)
2.
Để pt đã cho có 2 nghiệm:
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)
Khi đó:
\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)
\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)
a: Vì a=-1<0 nên hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (-∞;2]
Bảng biến thiên là:
x | -∞ | 2 | +∞ |
y | -∞ | 1 | -∞ |
1)Dat t=\(\sqrt{4x-x^2}\)\(\Rightarrow Pt\Leftrightarrow t^2+2t+1=m+1\ge0\Rightarrow m\ge-1\)
Theo dinh li Viet thi \(\left\{{}\begin{matrix}t_1+t_2=-2\\t_1t_2=-m\end{matrix}\right.\Rightarrow-m\le0\Leftrightarrow m\ge0}\)
Dat \(t=\sqrt{x^2+4x+5}\left(t\ge1\right)\)\(\Rightarrow Pt\Leftrightarrow t^2+t+m-2=0\)
DK:\(\Delta=1-4\left(m-2\right)=9-4m\ge0\Leftrightarrow m\le\dfrac{9}{4}\)
Pt co nghiem la \(t=\dfrac{-1-\sqrt{\Delta}}{2}\left(loai\right),t=\dfrac{-1+\sqrt{\Delta}}{2}\)
Vi \(t\ge1\)\(\Rightarrow\sqrt{\Delta}\ge3\Leftrightarrow9-4m\ge9\Leftrightarrow m\le0\)
\(5\ge\left|x\right|=\left|\sqrt{\dfrac{-1+\sqrt{9-4m}}{2}}\right|=\sqrt{\dfrac{-1+\sqrt{9-4m}}{2}}\Leftrightarrow\sqrt{9-4m}\le51\Leftrightarrow m\ge-648\)Vay \(-648\le m\le0\)