Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\frac{3\left(x-1\right)^2+12}{\left(x-1\right)^2+2}=\frac{3\left[\left(x-1\right)^2+2\right]+6}{\left(x-1\right)^2+2}=3+\frac{6}{\left(x-1\right)^2+2}\)
Để \(A\in Z\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Mà \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2\ge2\)
\(\Rightarrow\left(x-1\right)^2+2\in\left\{2;3;6\right\}\)
Ta có bảng:
(x - 1)2 + 2 | 2 | 3 | 6 |
x | 1 | 2 | 3 |
Vậy...
b, Theo câu a ta có: \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{1}{\left(x-1\right)^2+2}\le\frac{1}{2}\Rightarrow\frac{6}{\left(x-1\right)^2+2}\le\frac{6}{2}=3\)
Dấu "=" xảy ra khi x - 1 = 0 <=> x = 1
Vậy GTLN của A = 3 khi x = 1
a) Ta có :
\(A=\frac{3.\left(x-1\right)^2+12}{\left(x-1\right)^2+2}=\frac{3.\left(x-1\right)^2+3.2+6}{\left(x-1\right)^2+2}=\frac{3.\left[\left(x-1\right)^2+2\right]+6}{\left(x-1\right)^2+2}=3+\frac{6}{\left(x-1\right)^2+2}\)
Để A có giá trị nguyên \(\Leftrightarrow\)\(3+\frac{6}{\left(x-1\right)^2+2}\)\(\in\)Z \(\Leftrightarrow\)\(\frac{6}{\left(x-1\right)^2+2}\)\(\in\)Z \(\Leftrightarrow\)( x - 1 )2 + 2 \(\in\)Ư ( 6 )
\(\Rightarrow\)( x - 1 )2 + 2 \(\in\){ 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 6 ; -6 }
Lập bảng ta có :
(x-1)2+2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | loại | loại | 0 | loại | \(\orbr{\begin{cases}2\\0\end{cases}}\) | loại | \(\orbr{\begin{cases}3\\-1\end{cases}}\) | loại |
Vậy x = { 0 ; 2 ; 3 ; -1 }
b) để A có giá trị lớn nhất \(\Leftrightarrow\)\(3+\frac{6}{\left(x-1\right)^2+2}\)có GTLN \(\Leftrightarrow\)\(\frac{6}{\left(x-1\right)^2+2}\)có GTLN \(\Leftrightarrow\)( x - 1 )2 +2 có GTNN
Mà ( x - 1 )2 \(\ge\)0 \(\Rightarrow\)( x - 1 )2 + 2 \(\ge\)2 \(\Rightarrow\)GTNN của ( x - 1 )2 + 2 là 2 \(\Leftrightarrow\)x = 1
Vậy A có GTLN là : \(\frac{3.\left(1-1\right)^2+12}{\left(1-1\right)^2+2}=\frac{12}{2}=6\)\(\Leftrightarrow\)x = 1