Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\widehat{aOx}=\widehat{bOx}=\dfrac{\widehat{aOb}}{2}=\dfrac{150^0}{2}=75^0\) ( vì Ox là p.giác của \(\widehat{aOb}\) )
\(\widehat{aOx}+\widehat{aOy}=180^0\) ( kề bù )
\(\widehat{aOy}=\widehat{aOc}+\widehat{cOy}\)
⇒ \(\widehat{aOx}+\widehat{aOc}+\widehat{cOy}=180^0\)
⇒ \(\widehat{cOy}=180^0-\left(\widehat{aOx}+\widehat{aOc}\right)\)
\(=180^0-\left(75^0+90^0\right)\)
\(=180^0-165^0\)
\(=15^0\) (1)
\(\widehat{xOb}+\widehat{bOy}=180^0\) ( kề bù )
\(\widehat{bOy}=\widehat{bOd}+\widehat{dOy}\)
⇒ \(\widehat{xOb}+\widehat{bOd}+\widehat{dOy}=180^0\)
⇒ \(\widehat{dOy}=180^0-\left(\widehat{xOb}+\widehat{bOd}\right)\)
\(=180^0-\left(75^0+90^0\right)\)
\(=180^0-165^0\)
\(=15^0\) (2)
Từ (1) và (2) ⇒ \(\widehat{dOy}=\widehat{cOy}\left(=15^0\right)\)
⇒ Oy là phân giác của \(\widehat{dOc}\)
b) \(\widehat{xOc}=\widehat{aOx}+\widehat{aOc}\)
\(=75^0+90^0\)
\(=165^0\)
\(\widehat{yOb}=\widehat{yOd}+\widehat{dOb}\)
\(=15^0+90^0\)
\(=105^0\)
⇒ \(\widehat{xOC}>\widehat{yOB}\) \(\left(165^0>105^0\right)\)
a) Theo đề, ta có Ox là tia phân giác của góc AOB
=> góc AOx = góc BOx = góc AOB : 2
=> góc AOX = góc BOx = 150 độ : 2 = 75 độ
Vì OA vuông góc với OC => góc AOC = 90 độ
góc AOx + góc AOC = góc xOC
=> góc xOC = 75 độ + 90 độ = 165 độ
Vì Ox là tia đối của Oy => góc xOy = 180 độ
Vì góc xOC và góc COy là hai góc kề bù => góc xOC + góc COy = 180 độ
=> góc COy = 180 độ - 165 độ = 15 độ
Tia OB vuông góc với tia OD => góc BOD = 90 độ
góc BOx + góc BOD = góc xOD
=> góc xOD = 75 độ + 90 độ = 165 độ
Vì góc xOD và góc DOy là hai góc kề bù
=> góc xOD + góc DOy = 180 độ
=> góc DOy = 180 độ - 165 độ = 15 độ
Vì góc COy = góc DOy = 15 độ => Oy là tia phân giác của góc COD
b) góc BOD + góc DOy = góc yOB ( vì OD nằm giữa)
=> góc yOB = 90 độ + 15 độ = 105 độ
Vì góc xOC = 165 độ mà góc yOB = 105 độ => góc xOC > góc yOB (165 độ > 105 độ
Bài 1:
Vẽ hình
Ta có: \(\widehat{xOy}+\widehat{yOt}+\widehat{zOt}+\widehat{xOz}=360^o\)(Tổng các góc trong không có điểm trong chung )
\(\Rightarrow\widehat{xOy}+90^o+\widehat{zOt}+90^o=360^o\)
\(\Rightarrow\widehat{xOy}+\widehat{zOt}=360^o-90^o-90^o\)
\(\Rightarrow\widehat{xOy}+\widehat{zOt}=180^o\)
Vậy \(\widehat{xOy}+\widehat{zOt}=180^o\)
Bài 2:
A) Ta có: \(\widehat{AOB}=100^o,\widehat{AOC}=90^o,\widehat{BOD}=90^o\)
\(\Rightarrow\widehat{COD}=360^o-\left(\widehat{AOB}+\widehat{AOC}+\widehat{BOD}\right)\)
\(=360^o-\left(100^o+90^o+90^o\right)=360^o-280^o=80^o\)
Ox là tia phân giác của \(\widehat{AOB}\)nên \(\widehat{xOA}=\frac{\widehat{AOB}}{2}=\frac{100^o}{2}=50^o\)
Oy là tia phân giác của \(\widehat{COD}\)nên \(\widehat{COy}=\frac{\widehat{COD}}{2}=\frac{80^o}{2}=40^o\)
Do đó: \(\widehat{xOy}=\widehat{xOA}+\widehat{AOC}+\widehat{COy}=50^o+90^o+40^o\)
Hay \(\widehat{xOy}=180^o\)
=> Ox và Oy là hai tia đối nhau ( đpcm )
b) Ta có: \(\widehat{xOC}=\widehat{xOA}+\widehat{AOC}=50^o+90^o=140^o\)
\(\widehat{BOy}=\widehat{BOD}+\widehat{DOy}=90^o+40^o=130^o\)