K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 7: Cho đường tròn (O; R), điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA,MB với đường tròn (A, B là các tiếp điểm). Nối MO cắt cung nhỏ AB tại Na) Cho OM = 2R. Tính AON và số đo A NBb) Biết AMB = 36o . Tính góc ở tâm hợp bởi hai bán kính OA, OB.Bài 8: Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn (O)cắt AB, AC tương ứng tại M và N.a) Chứng minh các cung nhỏ BM và CN có số...
Đọc tiếp

Bài 7: Cho đường tròn (O; R), điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA,
MB với đường tròn (A, B là các tiếp điểm). Nối MO cắt cung nhỏ AB tại N
a) Cho OM = 2R. Tính AON và số đo A NB
b) Biết AMB = 36o . Tính góc ở tâm hợp bởi hai bán kính OA, OB.
Bài 8: Cho tam giác ABC cân tại A. Vẽ đường tròn tâm O, đường kính BC. Đường tròn (O)
cắt AB, AC tương ứng tại M và N.
a) Chứng minh các cung nhỏ BM và CN có số đo bằng nhau
b) Tính MON , nếu BAC =40o
Bài 9: Trên cung nhỏ AB của đường tròn (O), cho hai điểm C, D sao cho cung AB được
chia thành ba cung bằng nhau, tức là AC =CD =DB . Bán kính OC và OD cắt dây AB lần
lượt tại E và F.
a) Hãy so sánh các đoạn thẳng AE, EF và FB
b) Chứng minh rằng AB // CD
Cả hình giúp mình nhé! mơn trc nàhihi

1

Bài 7:

a: Xét ΔOAM vuông tại A có 

\(\cos\widehat{AOM}=\dfrac{OA}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AOM}=60^0\)

b: Xét tứ giác OAMB có 

\(\widehat{OAM}+\widehat{OBM}=180^0\)

Do đó: OAMB là tứ giác nội tiếp

Suy ra: \(\widehat{AOB}=180^0-36^0=144^0\)

5 tháng 2 2021

Hình bạn tự vẽ nhé :

Xét tứ giác OAMB có : góc AOB + góc OAM + góc AMB +góc OBM =360 độ

⇒ góc AOB + 90 độ +54 độ +90 độ =360 độ 

⇒ góc AOB =360 độ - 90 độ -90 độ -54 độ = 126 độ 

a: OH*OM=OA^2=R^2

b: Xét tứ giác MAIO có góc MIO=góc MAO=90 độ

nên MAIO là tứ giác nội tiếp

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

b: Xét tứ giác MAIO có 

\(\widehat{OIM}=\widehat{OAM}=90^0\)

Do đó: MAIO là tứ giác nội tiếp

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

18 tháng 1 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

A, B, I nhìn MO cố định dưới một góc bằng 90° nên A, B, I nằm trên đường tròn bán kính MO.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

B và C cùng nằm trên một nửa mặt phẳng bờ chứa đường HI tạo với HI một góc bằng nhau nên tứ giác BCHI nội tiếp.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

19 tháng 4 2022

giúp mình với ạ

15 tháng 12 2021

a) Ta có: ΔOHA∼ΔOAM(g.g)ΔOHA∼ΔOAM(g.g)

⇔OHOA=OAOM⇔OA2=OH.OM=R2⇔OHOA=OAOM⇔OA2=OH.OM=R2

b) Ta có: ΔOAMΔOAM vuông tại A

ΔOIMΔOIM vuông tại I.

=> OM là cạnh huyền chung của hai tam giác trên

=> ˆOIM;ˆOAMOIM^;OAM^ cùng chắn OM

Vậy O, I, A, M cùng nằm trên đường tròn đường kính OM

c) Ta có: ΔOMI∼ΔOKH(g.g)ΔOMI∼ΔOKH(g.g)

⇔OIOH=OMOK⇔OI.OK=OH.OM=R2=OC2⇔OIOH=OMOK⇔OI.OK=OH.OM=R2=OC2⇒OCOK=OIOC⇒OCOK=OIOC

Xét ΔOCKvàΔOICΔOCKvàΔOIC

OCOK=OIOCOCOK=OIOC

ˆO:chungO^:chung

⇒ΔOCK∼ΔOIC(c.g.c)⇒ˆOCK=ˆOIC=90o⇒OC⊥OK⇒ΔOCK∼ΔOIC(c.g.c)⇒OCK^=OIC^=90o⇒OC⊥OK

=> KC là tiếp tuyến đường tròn (O; R)