Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 7:
a: Xét ΔOAM vuông tại A có
\(\cos\widehat{AOM}=\dfrac{OA}{OM}=\dfrac{1}{2}\)
nên \(\widehat{AOM}=60^0\)
b: Xét tứ giác OAMB có
\(\widehat{OAM}+\widehat{OBM}=180^0\)
Do đó: OAMB là tứ giác nội tiếp
Suy ra: \(\widehat{AOB}=180^0-36^0=144^0\)
Hình bạn tự vẽ nhé :
Xét tứ giác OAMB có : góc AOB + góc OAM + góc AMB +góc OBM =360 độ
⇒ góc AOB + 90 độ +54 độ +90 độ =360 độ
⇒ góc AOB =360 độ - 90 độ -90 độ -54 độ = 126 độ
a: OH*OM=OA^2=R^2
b: Xét tứ giác MAIO có góc MIO=góc MAO=90 độ
nên MAIO là tứ giác nội tiếp
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
b: Xét tứ giác MAIO có
\(\widehat{OIM}=\widehat{OAM}=90^0\)
Do đó: MAIO là tứ giác nội tiếp
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
A, B, I nhìn MO cố định dưới một góc bằng 90° nên A, B, I nằm trên đường tròn bán kính MO.
B và C cùng nằm trên một nửa mặt phẳng bờ chứa đường HI tạo với HI một góc bằng nhau nên tứ giác BCHI nội tiếp.
a) Ta có: ΔOHA∼ΔOAM(g.g)ΔOHA∼ΔOAM(g.g)
⇔OHOA=OAOM⇔OA2=OH.OM=R2⇔OHOA=OAOM⇔OA2=OH.OM=R2
b) Ta có: ΔOAMΔOAM vuông tại A
ΔOIMΔOIM vuông tại I.
=> OM là cạnh huyền chung của hai tam giác trên
=> ˆOIM;ˆOAMOIM^;OAM^ cùng chắn OM
Vậy O, I, A, M cùng nằm trên đường tròn đường kính OM
c) Ta có: ΔOMI∼ΔOKH(g.g)ΔOMI∼ΔOKH(g.g)
⇔OIOH=OMOK⇔OI.OK=OH.OM=R2=OC2⇔OIOH=OMOK⇔OI.OK=OH.OM=R2=OC2⇒OCOK=OIOC⇒OCOK=OIOC
Xét ΔOCKvàΔOICΔOCKvàΔOIC
OCOK=OIOCOCOK=OIOC
ˆO:chungO^:chung
⇒ΔOCK∼ΔOIC(c.g.c)⇒ˆOCK=ˆOIC=90o⇒OC⊥OK⇒ΔOCK∼ΔOIC(c.g.c)⇒OCK^=OIC^=90o⇒OC⊥OK
=> KC là tiếp tuyến đường tròn (O; R)