K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2020

a ) Ta có : 

+) \(AB< AC\) ( gt )  

 \(\Rightarrow ACB< ABC\) ( quan hệ gữa góc và cạnh đối diện )

+ ) \(ABH+BAH+AHB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABH+60+90=180\)

\(\Rightarrow ABH=30\)

b ) Ta có :\(AD\)là phân giác góc \(A\) ( gt ) 

\(\Rightarrow BAD=CAD=\frac{BAC}{2}=\frac{60}{2}=30\)

Mà \(ABH=30\) ( cmt ) 

\(\Rightarrow ABH=BAD\)

\(\Rightarrow ABH=BAI\)

Xét tam giác \(AIB\) và tam giác \(BHA\) có : 

\(AB\) chung 

\(AIB=BHA=90\)

\(BAI=ABH\)

\(\Rightarrow\) tam giác \(AIB\) \(=\) tam giác \(BHA\) ( g - c - g ) 

c ) Xét tam giác \(ABI\) có : 

\(ABI+BAI+AIB=180\)( tổng ba góc trong một tam giác )

\(\Rightarrow ABI+30+90=180\)

\(\Rightarrow ABI=60\)

\(\Rightarrow ABE=60\)                                 ( 1 ) 

 Xét tam giác \(ABE\) có : 

\(ABE+BAE+AEB=180\)  ( tổng ba góc trong một tam giác )

\(\Rightarrow60+60+AEB=180\)

\(\Rightarrow AEB=60\)                                  ( 2 ) 

Mà \(BAE=60\) ( gt )                         ( 3 )  

Từ ( 1 ) ; ( 2 ) ; ( 3 ) 

\(\Rightarrow\) tam giác \(ABE\) đều 

   
9 tháng 6 2020

Chứng minh câu d: 

A B C D H E I 1

Ta có: AE = AB < AC 

=> E thuộc canh AC 

\(\Delta\)ABE đều mà AD vuông BE tại I => AD là đường trung trực của DE => DB = DE  (1)

Dễ chứng minh \(\Delta\)ABD = \(\Delta\)AED 

=> ^ABD = ^AED => ^B1 = ^DEC  ( góc ngoài ) 

mà ^B1 là góc ngoài của \(\Delta\)ABC tại B => ^B> ^C 

=> ^DEC > ^C = ^ECD 

Xét trong \(\Delta\)DEC có: ^DEC > ^ECD => DC > DE (2) 

Từ (1); (2) => DC > DB 

5 tháng 5 2017

A B C H D E I

a) Ta có: AB < AC (gt)

Suy ra: \(\widehat{ACB}< \widehat{ABC}\) (quan hệ giữa góc và cạnh đối diện trong tam giác)

\(\Delta ABH\) vuông tại H

\(\Rightarrow\) \(\widehat{BAH}+\widehat{ABH}=90^o\)

\(\widehat{ABH}=90^o-\widehat{BAH}\)

\(\widehat{ABH}=90^o-60^o\)

Vậy: \(\widehat{ABH}=30^o\)

b) Ta có: \(\widehat{BAD}=\widehat{CAD}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^o}{2}=30^o\)

Xét hai tam giác vuông AIB và BHA có:

AB: cạnh huyền chung

\(\widehat{BAI}=\widehat{ABH}=30^o\)

Vậy: \(\Delta AIB=\Delta AHB\left(ch-gn\right)\)

c) Vì \(\Delta AIB=\Delta AHB\left(cmt\right)\)

\(\Rightarrow\) \(\widehat{BAH}=\widehat{ABI}\) (hai góc tương ứng)

\(\widehat{BAH}=60^o\)

\(\Rightarrow\) \(\widehat{ABI}=60^o\)

Do đó: \(\Delta ABE\) là tam giác đều

d) Ta có: AB < AC (gt)

Suy ra: DC > DB (quan hệ giữa đường xiên và hình chiếu của chúng)

Mik cx ko chắc lắm nhaleuleu

4 tháng 5 2017

các bn giúp mik với. Mik sắp phải nộp bài rồi. PLZ. Thanks mấy bn trước nhayeu

5 tháng 4 2016

a)

ta có : AB<AC

suy ra ACB<ABC

ABH=90-60=30

b)

DAC=DAB=90-(A/2)=90-30=60

ABI=90-30=60

xét 2 tam giác vuông AIB và BHA có

AB(chung)

ta có:

BAH=ABD=60(cmt)

suy ra AIB=BHA(CH-GN)

c)

theo câu a, ta có tam giác AIB=BHA(CH-GN)

suy ra ABI=BAC=60 độ

BEA=180-60-60=60 độ

ta có: ABE=BEA=EAB=60 suy ra tam giác ABE đều

5 tháng 4 2016

a,Ta có :

AB<AC (gt)

=> C<B

=> góc ABC < góc ACB

Tính góc ABH

Ta có : A+H+B=180 ( tổng 3 góc trong 1 tam giác )

60+90+B=180 ( góc H =90 vì vuông góc )

150+B=180

B=180-150

B=30

=>ABH=30

b,Xét 2 tg AIB= tg BHA vuông tại I và H

Có : I là góc chung

=> tg AIB= tg BHA(gcg)

c,ko bt lm 

d,ko bt luôn

15 tháng 5 2020

a) Vì BH là p/g của góc ABC

=> góc ABH = góc HBC = 1/2 góc BAC

=> góc ABH = 1/2. 60 độ

=> góc ABH = 30 độ