K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

a) Gọi K là giao điểm của EI và DM

Xét \(\Delta EKD\)và \(\Delta EKM\)có :

\(\widehat{E}_1=\widehat{E}_2\)( vì EI là tia phân giác )

\(EI\): Cạnh chung

\(\widehat{EKD}=\widehat{EKM}=90^o\)( GT)

Do đó : Tam giác vuông EKM = Tam giác vuông EKM 

\(\Rightarrow ED=EM\)( cặp cạnh tương ứng )

b) 

Xét \(\Delta EDI\)và \(\Delta EMI\)có :

\(ED=EM\)( câu a )

\(\widehat{E}_1=\widehat{E_2}\)( vì phân giác )

\(EI:\)Cạnh chung

Do đó : Tam giác EMI = tam giác EDI (c.g.c )

\(\Rightarrow\widehat{EDI}=\widehat{EMI}\)( cặp góc tương ứng )

Mà \(\widehat{EDI}=90^o\)

\(\Rightarrow\widehat{EMI}=90^o\)

\(\Rightarrow\Delta EMI\)là tam giác vuông ( đpcm)

c) 

Vì \(\widehat{EMI}=90^o\)( câu b )

\(\Rightarrow\widehat{IMF}=90^o\)

Xét tam giác IMF   ta có :

\(\widehat{IMF}=90\)

=> IF là cạnh lớn nhất   ( cạnh đối diện với góc vuông )

\(\Rightarrow IF>IM\)

Mà \(IM=ID\)( Vì tam giác EDI = tam giác EMI )

\(\Rightarrow IF>ID\)

c ) Áp dụng t/c đường đồng quy .

18 tháng 2 2017

TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ

\(AB^2+BC^2=AC^2\)

=>\(8^2+15^2=289=>AC^{ }=17\)

=>AC=17 CM

A B C E

30 tháng 4 2019

a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)

hay\(5^2=3^2+DF^2\)

\(\Rightarrow DF^2=5^2-3^2=25-9=16\)

\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)

Ta có:\(DE=3cm\)

\(DF=4cm\)

\(EF=5cm\)

\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)

b)Xét\(\Delta DEF\)\(\Delta DKF\)có:

\(DE=DK\)(\(D\)là trung điểm của\(EK\))

\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)

\(DF\)là cạnh chung

Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)

\(\Rightarrow EF=KF\)(2 cạnh t/ứ)

Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)

Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)

c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

Ta lại có:​\(DF\)cắt\(KI\)tại\(G\)

mà​\(DF\)​là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)

\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))

\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)

Vậy\(GF\approx2,7cm\)

\(\text{#TNam}\)

`a,`

Xét Tam giác `ABI` và Tam giác `MBI` có:

`\text {BI chung}`

\(\widehat{ABI}=\widehat{MBI} (\text {tia phân giác}\) \(\widehat{ABM} )\)

\(\widehat{BAI}=\widehat{BMI}=90^0\)

`=> \text {Tam giác ABI = Tam giác MBI (ch-gn)}`

`=> BA = BM (\text {2 cạnh tương ứng})`

Gọi `H` là giao điểm của `BI` với `AM`

Xét Tam giác `HAB` và Tam giác `HMB` có:

\(\text{BA = BM (CMT)}\)

\(\widehat{ABH}=\widehat{MBH} (\text {tia phân giác} \widehat{ABM})\)

`\text {BH chung}`

`=> \text {Tam giác HAB = Tam giác HMB (c-g-c)}`

`-> \text {HA = HM (2 cạnh tương ứng)}`

`->`\(\widehat{BHA}=\widehat{BHM} (\text {2 góc tương ứng})\)

Mà `2` góc này nằm ở vị trí kề bù

`->`\(\widehat{BHA}+\widehat{BHM}=180^0\)

`->`\(\widehat{BHA}=\widehat{BHM}=\)`180/2=90^0`

`-> \text {BH} \bot \text {AM}`

Ta có: \(\left\{{}\begin{matrix}BH\perp AM\\HA=HM\end{matrix}\right.\)

`->` \(\text{BI là đường trung trực của AM.}\)

`b,`

Xét Tam giác `BAC` và Tam giác `BMN` có:

\(\widehat{B} \) `\text {chung}`

`BA = BM (a)`

\(\widehat{BAC}=\widehat{BMN}=90^0\)

`=> \text {Tam giác BAC = Tam giác BMN (g-c-g)}`

`-> \text {BN = BC (2 cạnh tương ứng)}`

Xét Tam giác `BIN` và Tam giác `BIC` có:

`BN = BC (CMT)`

\(\widehat{NBI}=\widehat{CBI} (\text {tia phân giác} \widehat{NBC})\)

`\text {BI chung}`

`=> \text {Tam giác BIN = Tam giác BIC (c-g-c)}`

`-> \text {IN = IC (2 cạnh tương ứng)}`
`c,`

Gọi `K` là giao điểm của `BI` và `NC`

Xét Tam giác `NBK` và Tam giác `CBK` có:

`BN = BC (CMT)`

\(\widehat{NBK}=\widehat{CBK} (\text {tia phân giác} \widehat{NBC})\)

`\text {BK chung}`

`=> \text {Tam giác NBK = Tam giác CBK (c-g-c)}`

`->`\(\widehat{BKN}=\widehat{BKC} (\text {2 góc tương ứng})\)

Mà `2` góc này nằm ở vị trí kề bù

`->`\(\widehat{BKN}+\widehat{BKC}=180^0\)

`->`\(\widehat{BKN}=\widehat{BKC}=\)`180/2=90^0`

`-> \text {BK} \bot \text {NC}`

`-> \text {BI} \bot \text {NC (đpcm)}`

loading...